121 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    Fault detection in operating helicopter drive train components based on support vector data description

    Get PDF
    The objective of the paper is to develop a vibration-based automated procedure dealing with early detection of mechanical degradation of helicopter drive train components using Health and Usage Monitoring Systems (HUMS) data. An anomaly-detection method devoted to the quantification of the degree of deviation of the mechanical state of a component from its nominal condition is developed. This method is based on an Anomaly Score (AS) formed by a combination of a set of statistical features correlated with specific damages, also known as Condition Indicators (CI), thus the operational variability is implicitly included in the model through the CI correlation. The problem of fault detection is then recast as a one-class classification problem in the space spanned by a set of CI, with the aim of a global differentiation between normal and anomalous observations, respectively related to healthy and supposedly faulty components. In this paper, a procedure based on an efficient one-class classification method that does not require any assumption on the data distribution, is used. The core of such an approach is the Support Vector Data Description (SVDD), that allows an efficient data description without the need of a significant amount of statistical data. Several analyses have been carried out in order to validate the proposed procedure, using flight vibration data collected from a H135, formerly known as EC135, servicing helicopter, for which micro-pitting damage on a gear was detected by HUMS and assessed through visual inspection. The capability of the proposed approach of providing better trade-off between false alarm rates and missed detection rates with respect to individual CI and to the AS obtained assuming jointly-Gaussian-distributed CI has been also analysed

    Joint sub-classifiers one class classification model for avian influenza outbreak detection

    Full text link
    H5N1 avian influenza outbreak detection is a significant issue for early warning of epidemics. This paper proposes domain knowledge-based joint one class classification model for avian influenza outbreak. Instead of focusing on manipulations of the one class classification model, we delve into the one class avian influenza dataset, divide it into sub-classes by domain knowledge, train the sub-class classifiers and unify the result of each classifier. The proposed joint method solves the one class classification and features selection problems together. The experiment results demonstrate that the proposed joint model definitely outperforms the normal one class classification model on the animal avian influenza dataset. © 2011 Imperial College Press

    User-Centric Active Learning for Outlier Detection

    Get PDF
    Outlier detection searches for unusual, rare observations in large, often high-dimensional data sets. One of the fundamental challenges of outlier detection is that ``unusual\u27\u27 typically depends on the perception of a user, the recipient of the detection result. This makes finding a formal definition of ``unusual\u27\u27 that matches with user expectations difficult. One way to deal with this issue is active learning, i.e., methods that ask users to provide auxiliary information, such as class label annotations, to return algorithmic results that are more in line with the user input. Active learning is well-suited for outlier detection, and many respective methods have been proposed over the last years. However, existing methods build upon strong assumptions. One example is the assumption that users can always provide accurate feedback, regardless of how algorithmic results are presented to them -- an assumption which is unlikely to hold when data is high-dimensional. It is an open question to which extent existing assumptions are in the way of realizing active learning in practice. In this thesis, we study this question from different perspectives with a differentiated, user-centric view on active learning. In the beginning, we structure and unify the research area on active learning for outlier detection. Specifically, we present a rigorous specification of the learning setup, structure the basic building blocks, and propose novel evaluation standards. Throughout our work, this structure has turned out to be essential to select a suitable active learning method, and to assess novel contributions in this field. We then present two algorithmic contributions to make active learning for outlier detection user-centric. First, we bring together two research areas that have been looked at independently so far: outlier detection in subspaces and active learning. Subspace outlier detection are methods to improve outlier detection quality in high-dimensional data, and to make detection results more easy to interpret. Our approach combines them with active learning such that one can balance between detection quality and annotation effort. Second, we address one of the fundamental difficulties with adapting active learning to specific applications: selecting good hyperparameter values. Existing methods to estimate hyperparameter values are heuristics, and it is unclear in which settings they work well. In this thesis, we therefore propose the first principled method to estimate hyperparameter values. Our approach relies on active learning to estimate hyperparameter values, and returns a quality estimate of the values selected. In the last part of the thesis, we look at validating active learning for outlier detection practically. There, we have identified several technical and conceptual challenges which we have experienced firsthand in our research. We structure and document them, and finally derive a roadmap towards validating active learning for outlier detection with user studies

    Featured Anomaly Detection Methods and Applications

    Get PDF
    Anomaly detection is a fundamental research topic that has been widely investigated. From critical industrial systems, e.g., network intrusion detection systems, to people’s daily activities, e.g., mobile fraud detection, anomaly detection has become the very first vital resort to protect and secure public and personal properties. Although anomaly detection methods have been under consistent development over the years, the explosive growth of data volume and the continued dramatic variation of data patterns pose great challenges on the anomaly detection systems and are fuelling the great demand of introducing more intelligent anomaly detection methods with distinct characteristics to cope with various needs. To this end, this thesis starts with presenting a thorough review of existing anomaly detection strategies and methods. The advantageous and disadvantageous of the strategies and methods are elaborated. Afterward, four distinctive anomaly detection methods, especially for time series, are proposed in this work aiming at resolving specific needs of anomaly detection under different scenarios, e.g., enhanced accuracy, interpretable results, and self-evolving models. Experiments are presented and analysed to offer a better understanding of the performance of the methods and their distinct features. To be more specific, the abstracts of the key contents in this thesis are listed as follows: 1) Support Vector Data Description (SVDD) is investigated as a primary method to fulfill accurate anomaly detection. The applicability of SVDD over noisy time series datasets is carefully examined and it is demonstrated that relaxing the decision boundary of SVDD always results in better accuracy in network time series anomaly detection. Theoretical analysis of the parameter utilised in the model is also presented to ensure the validity of the relaxation of the decision boundary. 2) To support a clear explanation of the detected time series anomalies, i.e., anomaly interpretation, the periodic pattern of time series data is considered as the contextual information to be integrated into SVDD for anomaly detection. The formulation of SVDD with contextual information maintains multiple discriminants which help in distinguishing the root causes of the anomalies. 3) In an attempt to further analyse a dataset for anomaly detection and interpretation, Convex Hull Data Description (CHDD) is developed for realising one-class classification together with data clustering. CHDD approximates the convex hull of a given dataset with the extreme points which constitute a dictionary of data representatives. According to the dictionary, CHDD is capable of representing and clustering all the normal data instances so that anomaly detection is realised with certain interpretation. 4) Besides better anomaly detection accuracy and interpretability, better solutions for anomaly detection over streaming data with evolving patterns are also researched. Under the framework of Reinforcement Learning (RL), a time series anomaly detector that is consistently trained to cope with the evolving patterns is designed. Due to the fact that the anomaly detector is trained with labeled time series, it avoids the cumbersome work of threshold setting and the uncertain definitions of anomalies in time series anomaly detection tasks
    • …
    corecore