770 research outputs found

    SVD-based signal detector for cognitive radio networks

    Get PDF
    This paper examines the implementation of the Singular Value Decomposition (SVD) method to detect the presence of wireless signal.The method is used to find the maximum and minimum eigenvalues.We simulated the algorithm using common digital signal in wireless communication namely rectangular pulse shape, raised cosine and root-raised cosine to test the performance of the signal detector.The SVD-based signal detector was found to be more efficient in sensing signal without knowing the properties of the transmitted signal.The execution time is acceptable compared to the favorable energy detection.The computational complexity of SVD-based detector is medium compared to the energy detector.The algorithm is suitable for blind spectrum sensing where the properties of the signal to be detected are unknown. This is also the advantage of the algorithm since any signal would interfere and subsequently affect the quality of service (QoS) of the IEEE 802.22 connection. Furthermore, the algorithm performed better in the low signal-to-noise ratio (SNR) environment

    An Innovative Signal Detection Algorithm in Facilitating the Cognitive Radio Functionality for Wireless Regional Area Network Using Singular Value Decomposition

    Get PDF
    This thesis introduces an innovative signal detector algorithm in facilitating the cognitive radio functionality for the new IEEE 802.22 Wireless Regional Area Networks (WRAN) standard. It is a signal detector based on a Singular Value Decomposition (SVD) technique that utilizes the eigenvalue of a received signal. The research started with a review of the current spectrum sensing methods which the research classifies as the specific, semiblind or blind signal detector. A blind signal detector, which is known as eigenvalue based detection, was found to be the most desired detector for its detection capabilities, time of execution, and zero a-priori knowledge. The detection algorithm was developed analytically by applying the Signal Detection Theory (SDT) and the Random Matrix Theory (RMT). It was then simulated using Matlab® to test its performance and compared with similar eigenvalue based signal detector. There are several techniques in finding eigenvalues. However, this research considered two techniques known as eigenvalue decomposition (EVD) and SVD. The research tested the algorithm with a randomly generated signal, simulated Digital Video Broadcasting-Terrestrial (DVB-T) standard and real captured digital television signals based on the Advanced Television Systems Committee (ATSC) standard. The SVD based signal detector was found to be more efficient in detecting signals without knowing the properties of the transmitted signal. The algorithm is suitable for the blind spectrum sensing where the properties of the signal to be detected are unknown. This is also the advantage of the algorithm since any signal would interfere and subsequently affect the quality of service (QoS) of the IEEE 802.22 connection. Furthermore, the algorithm performed better in the low signal-to-noise ratio (SNR) environment. In order to use the algorithm effectively, users need to balance between detection accuracy and execution time. It was found that a higher number of samples would lead to more accurate detection, but will take longer time. In contrary, fewer numbers of samples used would result in less accuracy, but faster execution time. The contributions of this thesis are expected to assist the IEEE 802.22 Standard Working Group, regulatory bodies, network operators and end-users in bringing broadband access to the rural areas

    Signal detection algorithm for cognitive radio using singular value decomposition

    Get PDF
    This paper highlights an algorithm for detecting the presence of wireless signal using the Singular Value Decomposition (SVD) technique.We simulated the algorithm to detect common digital signals in wireless communication to test the performance of the signal detector.The SVD-based signal detector was found to be more efficient in detecting a signal without knowing the properties of the transmitted signal.The performance of the algorithm is better compared to the favorable energy detection.The algorithm is suitable for blind spectrum sensing where the properties of the signal to be detected are unknown.This is also the advantage of the algorithm since any signal would interfere and subsequently affect the quality of service (QoS) of the IEEE 802.22 connection.Furthermore, the algorithm performed better in the low signalto-noise ratio (SNR) environment

    Eigenvalue-based Cyclostationary Spectrum Sensing Using Multiple Antennas

    Full text link
    In this paper, we propose a signal-selective spectrum sensing method for cognitive radio networks and specifically targeted for receivers with multiple-antenna capability. This method is used for detecting the presence or absence of primary users based on the eigenvalues of the cyclic covariance matrix of received signals. In particular, the cyclic correlation significance test is used to detect a specific signal-of-interest by exploiting knowledge of its cyclic frequencies. The analytical threshold for achieving constant false alarm rate using this detection method is presented, verified through simulations, and shown to be independent of both the number of samples used and the noise variance, effectively eliminating the dependence on accurate noise estimation. The proposed method is also shown, through numerical simulations, to outperform existing multiple-antenna cyclostationary-based spectrum sensing algorithms under a quasi-static Rayleigh fading channel, in both spatially correlated and uncorrelated noise environments. The algorithm also has significantly lower computational complexity than these other approaches.Comment: 6 pages, 6 figures, accepted to IEEE GLOBECOM 201

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    SPECTRUM SENSING AND COOPERATION IN COGNITIVE-OFDM BASED WIRELESS COMMUNICATIONS NETWORKS

    Get PDF
    The world has witnessed the development of many wireless systems and applications. In addition to the large number of existing devices, such development of new and advanced wireless systems increases rapidly the demand for more radio spectrum. The radio spectrum is a limited natural resource; however, it has been observed that it is not efficiently utilized. Consequently, different dynamic spectrum access techniques have been proposed as solutions for such an inefficient use of the spectrum. Cognitive Radio (CR) is a promising intelligent technology that can identify the unoccupied portions of spectrum and opportunistically uses those portions with satisfyingly high capacity and low interference to the primary users (i.e., licensed users). The CR can be distinguished from the classical radio systems mainly by its awareness about its surrounding radio frequency environment. The spectrum sensing task is the main key for such awareness. Due to many advantages, Orthogonal Frequency Division Multiplexing system (OFDM) has been proposed as a potential candidate for the CR‟s physical layer. Additionally, the Fast Fourier Transform (FFT) in an OFDM receiver supports the performance of a wide band spectrum analysis. Multitaper spectrum estimation method (MTM) is a non-coherent promising spectrum sensing technique. It tolerates problems related to bad biasing and large variance of power estimates. This thesis focuses, generally, on the local, multi antenna based, and global cooperative spectrum sensing techniques at physical layer in OFDM-based CR systems. It starts with an investigation on the performance of using MTM and MTM with singular value decomposition in CR networks using simulation. The Optimal MTM parameters are then found. The optimal MTM based detector theoretical formulae are derived. Different optimal and suboptimal multi antenna based spectrum sensing techniques are proposed to improve the local spectrum sensing performance. Finally, a new concept of cooperative spectrum sensing is introduced, and new strategies are proposed to optimize the hard cooperative spectrum sensing in CR networks. The MTM performance is controlled by the half time bandwidth product and number of tapers. In this thesis, such parameters have been optimized using Monte Carlo simulation. The binary hypothesis test, here, is developed to ensure that the effect of choosing optimum MTM parameters is based upon performance evaluation. The results show how these optimal parameters give the highest performance with minimum complexity when MTM is used locally at CR. The optimal MTM based detector has been derived using Neyman-Pearson criterion. That includes probabilities of detection, false alarm and misses detection approximate derivations in different wireless environments. The threshold and number of sensed samples controlling is based on this theoretical work. In order to improve the local spectrum sensing performance at each CR, in the CR network, multi antenna spectrum sensing techniques are proposed using MTM and MTM with singular value decomposition in this thesis. The statistical theoretical formulae of the proposed techniques are derived including the different probabilities. ii The proposed techniques include optimal, that requires prior information about the primary user signal, and two suboptimal multi antenna spectrum sensing techniques having similar performances with different computation complexity; these do not need prior information about the primary user signalling. The work here includes derivations for the periodogram multi antenna case. Finally, in hard cooperative spectrum sensing, the cooperation optimization is necessary to improve the overall performance, and/or minimize the number of data to be sent to the main CR-base station. In this thesis, a new optimization method based on optimizing the number of locally sensed samples at each CR is proposed with two different strategies. Furthermore, the different factors that affect the hard cooperative spectrum sensing optimization are investigated and analysed and a new cooperation scheme in spectrum sensing, the master node, is proposed.Ministry of Interior-Kingdom of Saudi Arabi
    • …
    corecore