166 research outputs found

    Periodic controllers for vibration reduction using actively twisted blades

    Get PDF
    This paper compares two periodic control methods, the optimal H2 and the periodic static output feedback (POF), to reduce the helicopter rotor vibrations. Actively twisted blades with Macro-Fibre Composite (MFC) piezoelectric actuators are used. The design model is based on a simplified aerodynamic model and on a multi-body model of the Bo 105 isolated rotor with the original blades replaced by actively twisted ones. The performance of the two controllers in alleviating hub loads is verified with improved simulations based on a free-wake model

    Using the second-order information for reconfigurability analysis and design in the fault tolerant framework

    Get PDF
    The control reconfigurability measure defines the capability of a control system to allow recovery of performance when faults occur; therefore, it has been intended to be a tool for designing and synthesizing approaches in the fault tolerant control context. Reconfigurability depends on the controllability gramian, also known as the second-order information (SOI) in a broad sense. This paper proposes the assignation, by feedback, of the deterministic SOI in order to set the control reconfigurability of a given linear system. The theory concerned with this assignation is reviewed, then constructive theorems are given for finding constant feedback gains that approximate a required control reconfigurability for ease implementation. Also an unification of the reconfigurability measures proposed in the fault tolerance literature is given. Once the SOI is assigned by feedback, it can be computed online by using an identification method, which uses process input/output data. Results from simulation of the three tanks hydraulic benchmark, show that this approach can provide information about the system performance for fault tolerant purposes, thus online control reconfigurability computation and fault accommodation are considered. The approach presented in the paper gives an alternative for supervision taking into account the reconfigurability assigned by design

    Robust tracking design for uncertain MIMO systems using proportional–integral controller of order v

    Get PDF
    AbstractThis paper provides a systematic method to design robust tracking controllers of reference signals with bounded derivatives of order ν for uncertain multi‐input multi‐output (MIMO) systems with bounded parametric uncertainties, in particular, of rational multi‐affine type, and/or in presence of disturbances with bounded derivatives of order ν. The proposed controllers have state‐feedback structures combined with proportional–integral regulators of order ν (PIν). Theoretical tools and systematic methodologies are provided to effectively design robust controllers for the considered systems, also in case of additional bounded nonlinearities and/or not directly measurable states. Applicability and efficiency of the proposed methods are validated through three examples: the first one is theoretical and useful to validate the proposed methodology, the second case study presents a metal‐cutting problem for an industrial robot, and the third example deals with a composite robot, such as a milling machine

    Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems

    Get PDF
    This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Structured, Gain-Scheduled Control of Wind Turbines

    Get PDF

    HIGH-BANDWIDTH IDENTIFICATION AND COMPENSATION OF HYSTERETIC DYNAMICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore