55 research outputs found

    Learning for Cross-layer Resource Allocation in the Framework of Cognitive Wireless Networks

    Get PDF
    The framework of cognitive wireless networks is expected to endow wireless devices with a cognition-intelligence ability with which they can efficiently learn and respond to the dynamic wireless environment. In this dissertation, we focus on the problem of developing cognitive network control mechanisms without knowing in advance an accurate network model. We study a series of cross-layer resource allocation problems in cognitive wireless networks. Based on model-free learning, optimization and game theory, we propose a framework of self-organized, adaptive strategy learning for wireless devices to (implicitly) build the understanding of the network dynamics through trial-and-error. The work of this dissertation is divided into three parts. In the first part, we investigate a distributed, single-agent decision-making problem for real-time video streaming over a time-varying wireless channel between a single pair of transmitter and receiver. By modeling the joint source-channel resource allocation process for video streaming as a constrained Markov decision process, we propose a reinforcement learning scheme to search for the optimal transmission policy without the need to know in advance the details of network dynamics. In the second part of this work, we extend our study from the single-agent to a multi-agent decision-making scenario, and study the energy-efficient power allocation problems in a two-tier, underlay heterogeneous network and in a self-sustainable green network. For the heterogeneous network, we propose a stochastic learning algorithm based on repeated games to allow individual macro- or femto-users to find a Stackelberg equilibrium without flooding the network with local action information. For the self-sustainable green network, we propose a combinatorial auction mechanism that allows mobile stations to adaptively choose the optimal base station and sub-carrier group for transmission only from local payoff and transmission strategy information. In the third part of this work, we study a cross-layer routing problem in an interweaved Cognitive Radio Network (CRN), where an accurate network model is not available and the secondary users that are distributed within the CRN only have access to local action/utility information. In order to develop a spectrum-aware routing mechanism that is robust against potential insider attackers, we model the uncoordinated interaction between CRN nodes in the dynamic wireless environment as a stochastic game. Through decomposition of the stochastic routing game, we propose two stochastic learning algorithm based on a group of repeated stage games for the secondary users to learn the best-response strategies without the need of information flooding

    Optimized algorithms for multimedia streaming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Context-Aware Adaptive Streaming Media Distribution System in a Heterogeneous Network with Multiple Terminals

    Get PDF
    We consider the problem of streaming media transmission in a heterogeneous network from a multisource server to home multiple terminals. In wired network, the transmission performance is limited by network state (e.g., the bandwidth variation, jitter, and packet loss). In wireless network, the multiple user terminals can cause bandwidth competition. Thus, the streaming media distribution in a heterogeneous network becomes a severe challenge which is critical for QoS guarantee. In this paper, we propose a context-aware adaptive streaming media distribution system (CAASS), which implements the context-aware module to perceive the environment parameters and use the strategy analysis (SA) module to deduce the most suitable service level. This approach is able to improve the video quality for guarantying streaming QoS. We formulate the optimization problem of QoS relationship with the environment parameters based on the QoS testing algorithm for IPTV in ITU-T G.1070. We evaluate the performance of the proposed CAASS through 12 types of experimental environments using a prototype system. Experimental results show that CAASS can dynamically adjust the service level according to the environment variation (e.g., network state and terminal performances) and outperforms the existing streaming approaches in adaptive streaming media distribution according to peak signal-to-noise ratio (PSNR)

    Exposing a waveform interface to the wireless channel for scalable video broadcast

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-167).Video broadcast and mobile video challenge the conventional wireless design. In broadcast and mobile scenarios the bit-rate supported by the channel differs across receivers and varies quickly over time. The conventional design however forces the source to pick a single bit-rate and degrades sharply when the channel cannot support it. This thesis presents SoftCast, a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality. To do so, SoftCast ensures the samples of the digital video signal transmitted on the channel are linearly related to the pixels' luminance. Thus, when channel noise perturbs the transmitted signal samples, the perturbation naturally translates into approximation in the original video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity video, and a receiver with a bad channel (high noise) obtains a low fidelity video. SoftCast's linear design in essence resembles the traditional analog approach to communication, which was abandoned in most major communication systems, as it does not enjoy the theoretical opimality of the digital separate design in point-topoint channels nor its effectiveness at compressing the source data. In this thesis, I show that in combination with decorrelating transforms common to modern digital video compression, the analog approach can achieve performance competitive with the prevalent digital design for a wide variety of practical point-to-point scenarios, and outperforms it in the broadcast and mobile scenarios. Since the conventional bit-pipe interface of the wireless physical layer (PHY) forces the separation of source and channel coding, to realize SoftCast, architectural changes to the wireless PHY are necessary. This thesis discusses the design of RawPHY, a reorganization of the PHY which exposes a waveform interface to the channel while shielding the designers of the higher layers from much of the perplexity of the wireless channel. I implement SoftCast and RawPHY using the GNURadio software and the USRP platform. Results from a 20-node testbed show that SoftCast improves the average video quality (i.e., PSNR) across diverse broadcast receivers in our testbed by up to 5.5 dB in comparison to conventional single- or multi-layer video. Even for a single receiver, it eliminates video glitches caused by mobility and increases robustness to packet loss by an order of magnitude.by Szymon Kazimierz Jakubczak.Ph.D

    Design and Analysis of Forward Error Control Coding and Signaling for Guaranteeing QoS in Wireless Broadcast Systems

    Get PDF
    Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.Siirretty Doriast

    Data Processing and Fusion For Multi-Source Wireless Systems

    Get PDF
    The constant evolution of the telecommunication technologies is one fundamental aspect that characterizes the modern era. In the context of healthcare and security, different scenarios are characterized by the presence of multiple sources of information that can support a large number of innovative services. For example, in emergency scenarios, reliable transmission of heterogeneous information (health conditions, ambient and diagnostic videos) can be a valid support for managing the first-aid operations. The presence of multiple sources of information requires a careful communication management, especially in case of limited transmission resource availability. The objective of my Ph.D. activity is to develop new optimization techniques for multimedia communications, considering emergency scenarios characterized by wireless connectivity. Different criteria are defined in order to prioritize the available heterogeneous information before transmission. The proposed solutions are based on the modern concept of content/context awareness: the transmission parameters are optimized taking into account the informative content of the data and the general context in which the information sources are located. To this purpose, novel cross-layer adaptation strategies are proposed for multiple SVC videos delivered over wireless channel. The objective is to optimize the resource allocation dynamically adjusting the overall transmitted throughput to meet the actual available bandwidth. After introducing a realistic camera network, some numerical results obtained with the proposed techniques are showed. In addition, through numerical simulations the benefits are showed, in terms of QoE, introduced by the proposed adaptive aggregation and transmission strategies applied in the context of emergency scenarios. The proposed solution is fully integrated in European research activities, including the FP7 ICT project CONCERTO. To implement, validate and demonstrate the functionalities of the proposed solutions, extensive transmission simulation campaigns are performed. Hence, the presented solutions are integrated on a common system simulator which is been developed within the CONCERTO project

    Efficient delivery of scalable media streaming over lossy networks

    Get PDF
    Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality

    Adaptive delivery of immersive 3D multi-view video over the Internet

    Get PDF
    The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions

    3D multiple description coding for error resilience over wireless networks

    Get PDF
    Mobile communications has gained a growing interest from both customers and service providers alike in the last 1-2 decades. Visual information is used in many application domains such as remote health care, video –on demand, broadcasting, video surveillance etc. In order to enhance the visual effects of digital video content, the depth perception needs to be provided with the actual visual content. 3D video has earned a significant interest from the research community in recent years, due to the tremendous impact it leaves on viewers and its enhancement of the user’s quality of experience (QoE). In the near future, 3D video is likely to be used in most video applications, as it offers a greater sense of immersion and perceptual experience. When 3D video is compressed and transmitted over error prone channels, the associated packet loss leads to visual quality degradation. When a picture is lost or corrupted so severely that the concealment result is not acceptable, the receiver typically pauses video playback and waits for the next INTRA picture to resume decoding. Error propagation caused by employing predictive coding may degrade the video quality severely. There are several ways used to mitigate the effects of such transmission errors. One widely used technique in International Video Coding Standards is error resilience. The motivation behind this research work is that, existing schemes for 2D colour video compression such as MPEG, JPEG and H.263 cannot be applied to 3D video content. 3D video signals contain depth as well as colour information and are bandwidth demanding, as they require the transmission of multiple high-bandwidth 3D video streams. On the other hand, the capacity of wireless channels is limited and wireless links are prone to various types of errors caused by noise, interference, fading, handoff, error burst and network congestion. Given the maximum bit rate budget to represent the 3D scene, optimal bit-rate allocation between texture and depth information rendering distortion/losses should be minimised. To mitigate the effect of these errors on the perceptual 3D video quality, error resilience video coding needs to be investigated further to offer better quality of experience (QoE) to end users. This research work aims at enhancing the error resilience capability of compressed 3D video, when transmitted over mobile channels, using Multiple Description Coding (MDC) in order to improve better user’s quality of experience (QoE). Furthermore, this thesis examines the sensitivity of the human visual system (HVS) when employed to view 3D video scenes. The approach used in this study is to use subjective testing in order to rate people’s perception of 3D video under error free and error prone conditions through the use of a carefully designed bespoke questionnaire.EThOS - Electronic Theses Online ServicePetroleum Technology Development Fund (PTDF)GBUnited Kingdo
    corecore