386 research outputs found

    Hot luminescence from single-molecule chromophores electrically and mechanically self-decoupled by tripodal scaffolds

    Get PDF
    Control over the electrical contact to an individual molecule is one of the biggest challenges in molecular optoelectronics. The mounting of individual chromophores on extended tripodal scaffolds enables both efficient electrical and mechanical decoupling of individual chromophores from metallic leads. Core-substituted naphthalene diimides fixed perpendicular to a gold substrate by a covalently attached extended tripod display high stability with well-defined and efficient electroluminescence down to the single-molecule level. The molecularly controlled spatial arrangement balances the electric conduction for electroluminescence and the insulation to avoid non-radiative carrier recombination, enabling the spectrally and spatially resolved electroluminescence of individual self-decoupled chromophores in a scanning tunneling microscope. Hot luminescence bands are even visible in single self-decoupled chromophores, documenting the mechanical decoupling between the vibrons of the chromophore and the substrate

    Characterization and analysis of hybrid electronic materials for molecular based devices

    Get PDF
    The goal of this work is to characterize and to analyze hybrid electronic materials (HEMs) using fluorescence (FL) spectroscopy and conductive probe-atomic force microscopy (CP-AFM) in order to investigate the electrical and optical properties of these materials. Currently, research efforts to characterize novel organic materials for the determination of molecular level transport properties are of great interest.[6] One of the most interesting organic materials is the porphyrin molecule, which exhibits behavior useful for memory applications.[4] Colloidal CdS quantum dots (Q-CdS) capped with dioctyl sulfosuccinate (AOT) and thiol functionalized porphyrin molecules are explored for their potential application to next-generation hybrid electronic systems. Q-CdS capped with AOT self-assembled on various substrates are used to study the effect of electron transport in colloidal quantum dots using FL spectroscopy. In turn, porphyrin molecules chemisorbed onto gold surfaces are used to study the phonon-electron interaction in these molecules due to their metal cations. Maximum fluorescence intensities are obtained at specific angles of incidence, such as 80 and 45 degree with respect to the sample, for Q-CdS and porphyrin molecules, respectively. Emission spectra of Q-CdS absorbed onto different substrates such as gold, GaAs, and mica show a slight but systematic redshift of peak characteristics of spatially confined phonon interactions. The effects of relative quantum dot size, different substrates, and light intensity are discussed in this thesis. As the relative sizes of the quantum dots decrease, the excitonic peaks are slightly blue shifted. In order to study the electron transport mechanism of a single or a few molecules in metal-molecule-metal heterostructures, the electronic characteristics of self-assembled monolayers (SAMs) of n-alkanethiols such as hexanethiol and octanethiol are investigated using CP-AFM. SAMs of alkanethiols on gold surfaces have been shown to form stable surface structures.[21] Studies have shown that thiolated porphyrins readily self-assemble on gold surfaces.[73] The I-V characteristics of self-assembled monothiolated porphyrin molecules on gold substrates are measured under ambient conditions. I-V traces of porphyrin molecules behave sigmoidally according to the Simmons Equation for square barrier tunneling and illustrate that the electron transport mechanism through porphyrin is direct tunneling for the applied bias levels in this study

    Light Emission from Single Self-decoupled Molecules in a Scanning Tunnelling Microscope

    Get PDF
    In this work, a clear pathway is presented to achieve well-defined electronically decoupled chromophores from metallic leads without requiring additional insulating layers. To study such self-decoupled molecules, STM equipped with an efficient light detection setup has been used. Results show that the chromophores mounted on tripodal molecular platforms adsorbed on a gold surface present well-defined and efficient electroluminescence down to the single-molecule level

    Scanning Tunneling Luminescence of Pentacene Nanocrystals

    Get PDF
    Organic semiconductors are promising materials for future electronic and electroluminescence applications. A detailed understanding of organic layers and nano-sized crystals down to single molecules can address fundamental questions of contacting organic semiconductors at the nanometer limit and obtaining luminescence from them. In this thesis, electroluminescence spectra from pentacene, a policyclic hydrocarbon (acene), are discussed. The luminescence is induced by the current from the tip of a scanning tunneling microscope (STM). Pentacene is an organic semiconductor which gained a lot of attention in technology because of its electronic properties suitable for applications in thin film devices. Moreover, recent fundamental studies employed pentacene as a standard to demonstrate sub-molecular resolution by scanning probe techniques. This work reports the first observation of light emission from nanometer-sized pentacene crystals grown on an ultrathin insulating layer on noble metal surfaces. Different STM-techniques are combined to characterize the individual systems studied with respect to topography, crystal structure, electronic properties and work function changes. The initial step of the project was the implementation of an optical system for light collection from the tunnel-junction of a low-temperature STM. In the set-up, a novel approach based on the use of in situ adjustable lenses has been realized. Three lenses placed in the vicinity of the tip-apex allow light collection into three independent channels which can be used for versatile optical analysis. An important part in the characterization of the organic system was to clarify the interaction between adsorbed molecules and substrates. We investigated individual pentacene molecules on different ultrathin insulator-metal systems. With the STM tip in tunnel contact, the molecules are situated in a double barrier junction formed by the insulating layer on one side and the vacuum gap on the other side. The metal surface and the STM-tip form the electrodes. The electronic properties of pentacene in this configuration have been characterized. Insulator-metal-systems, which provide a good electronic decoupling for pentacene from the metal, have been chosen as substrates for the growth of pentacene nanocrystals. Using the sub-molecular resolution of the STM we resolved the structure of the top-layer of the pentacene nanocrystals and found that the crystal phase agrees with the pentacene bulk structure. Moreover, the comparison of charge injection barriers between individual molecules and nanocrystals of pentacene indicates a significant change of electronic properties after the formation of ordered structure from the individual building blocks. Optical spectroscopy of the emitted light reveals an excitonic emission from the nanocrystals, which is in very good agreement with photoemission spectra of macroscopic crystals. Although a highly localized current-injection by the STM tip is used for excitation, it can be concluded that the source of light emission is delocalized. In contrast to luminescence measurements reported for other organic materials in STM, the excitation is not localized on the individual molecule, into which a charge is injected by the STM-tip. Our study indicates the importance of inter-molecular coupling leading to a high mobility of the excited state which has to be considered in the framework of STM-induced luminescence. A further result is the observation of the Stark shift of pentacene luminescence, that has so far not been measured at large electric fields of the order of 1V/nm. The evaluation of the Stark shift provides information on dipole and polarizability change during the decay of an exciton. The measured large dipole change of the lowest singlet exciton in pentacene indicates a mixing of the Frenkel exciton (FE) with a small contribution of charge-transfer (CT). Finally, we developed a set-up for photon correlation measurements in the STM. The properties of photon statistics is a means which can unambiguously prove that the luminescence is due to a single-photon source, i.e. a light source which emits no more than one photon at a time. A typical example of such a source is the emission from a single molecule. We performed photon correlations measurements of the luminescence from pentacene and C60 nanocrystals. While the excitonic bulk emission of pentacene is not expected to represent a single photon emitter, we also did not observe anticorrelations in the case of C60 indicating the importance of the local environment in the STM-junction, e.g. the short distance to the metal electrodes

    Light Emission from Single Self-decoupled Molecules in a Scanning Tunnelling Microscope

    Get PDF
    In this work, a clear pathway is presented to achieve well-defined electronically decoupled chromophores from metallic leads without requiring additional insulating layers. To study such self-decoupled molecules, STM equipped with an efficient light detection setup has been used. Results show that the chromophores mounted on tripodal molecular platforms adsorbed on a gold surface present well-defined and efficient electroluminescence down to the single-molecule level

    Light Emission from Single Self-decoupled Molecules in a Scanning Tunnelling Microscope

    Get PDF
    In this work, a clear pathway is presented to achieve well-defined electronically decoupled chromophores from metallic leads without requiring additional insulating layers. To study such self-decoupled molecules, STM equipped with an efficient light detection setup has been used. Results show that the chromophores mounted on tripodal molecular platforms adsorbed on a gold surface present well-defined and efficient electroluminescence down to the single-molecule level

    Ballistic electron microscopy and spectroscopy of metal and semiconductor nanostructures

    Get PDF
    Ballistic electron emission microscopy (BEEM) and its spectroscopy utilize ballistic transport of hot carriers as a versatile tool to characterize nanometer-scale structural and electronic properties of metallic and semiconducting materials and their interfaces. In this review, recent progress in experimental and theoretical aspects of the BEEM technique are covered. Emphasis is drawn to the development of BEEM in several emerging fields, including spin-sensitive hot-carrier transport through ferromagnetic thin films and multilayers, hot-electron spectroscopy and imaging of organic thin films and molecules, and hot-electron induced electroluminescence in semiconductor heterostructures. A brief discussion on BEEM of cross-sectional semiconductor heterostructures and advanced insulator films is also included
    corecore