92 research outputs found

    Contribución al modelado y diseño de moduladores sigma-delta en tiempo continuo de baja relación de sobremuestreo y bajo consumo de potencia

    Get PDF
    Continuous-Time Sigma-Delta modulators are often employed as analog-to-digital converters. These modulators are an attractive approach to implement high-speed converters in VLSI systems because they have low sensitivity to circuit imperfections compared to other solutions. This work is a contribution to the analysis, modelling and design of high-speed Continuous-Time Sigma-Delta modulators. The resolution and the stability of these modulators are limited by two main factors, excess-loop delay and sampling uncertainty. Both factors, among others, have been carefully analysed and modelled. A new design methodology is also proposed. It can be used to get an optimum high-speed Continuous-Time Sigma-Delta modulator in terms of dynamic range, stability and sensitivity to sampling uncertainty. Based on the proposed design methodology, a software tool that covers the main steps has been developed. The methodology has been proved by using the tool in designing a 30 Megabits-per-second Continuous-Time Sigma-Delta modulator with 11-bits of dynamic range. The modulator has been integrated in a 0.13-”m CMOS technology and it has a measured peak SNR of 62.5dB

    Design and implementation of a wideband sigma delta ADC

    Get PDF
    Abstract. High-speed and wideband ADCs have become increasingly important in response to the growing demand for high-speed wireless communication services. Continuous time sigma delta modulators (CTƩ∆M), well-known for their oversampling and noise shaping properties, offer a promising solution for low-power and high-speed design in wireless applications. The objective of this thesis is to design and implement a wideband CTƩ∆M for a global navigation satellite system(GNSS) receiver. The targeted modulator architecture is a 3rdorder single-bit CTƩ∆M, specifically designed to operate within a 15 MHz signal bandwidth. With an oversampling ratio of 25, the ADC’s sampling frequency is set at 768 MHz. The design goal is to achieve a theoretical signal to noise ratio (SNR) of 55 dB. This thesis focuses on the design and implementation of the CTƩ∆M, building upon the principles of a discrete time Ʃ∆ modulator, and leveraging system-level simulation and formulations. A detailed explanation of the coefficient calculation procedure specific to CTƩ∆ modulators is provided, along with a "top-down" design approach that ensures the specified requirements are met. MATLAB scripts for coefficient calculation are also included. To overcome the challenges associated with the implementation of CTƩ∆ modulators, particularly excess loop delay and clock jitter sensitivity, this thesis explores two key strategies: the introduction of a delay compensation path and the utilization of a finite impulse response (FIR) feedback DAC. By incorporating a delay compensation path, the stability of the modulator can be ensured and its noise transfer function (NTF) can be restored. Additionally, the integration of an FIR feedback DAC addresses the issue of clock jitter sensitivity, enhancing the overall performance and robustness of the CTƩ∆M. The CTƩ∆Ms employ the cascade of integrators with feed forward (CIFF) and cascade of integrators with feedforward and feedback (CIFF-B) topologies, with a particular emphasis on the CIFF-B configuration using 22nm CMOS technology node and a supply voltage of 0.8 V. Various simulations are performed to validate the modulator’s performance. The simulation results demonstrate an achievable SNR of 55 dB with a power consumption of 1.36 mW. Furthermore, the adoption of NTF zero optimization techniques enhances the SNR to 62 dB.Laajakaistaisen jatkuva-aikaisen sigma delta-AD-muuntimen suunnittelu ja toteutus. TiivistelmĂ€. Nopeat ja laajakaistaiset AD-muuntimet ovat tulleet entistĂ€ tĂ€rkeĂ€mmiksi nopeiden langattomien kommunikaatiopalvelujen kysynnĂ€n kasvaessa. Jatkuva-aikaiset sigma delta -modulaattorit (CTƩ∆M), joissa kĂ€ytetÀÀn ylinĂ€ytteistystĂ€ ja kohinanmuokkausta, tarjoavat lupaavan ratkaisun matalan tehonkulutuksen ja nopeiden langattomien sovellusten suunnitteluun. TĂ€mĂ€n työn tarkoituksena on suunnitella ja toteuttaa laajakaistainen jatkuva -aikainen sigma delta -modulaattori satelliittipaikannusjĂ€rjestelmien (GNSS) vastaanottimeen. Arkkitehtuuriltaan modulaattori on kolmannen asteen 1-bittinen CTƩ∆M, jolla on 15MHz:n signaalikaistanleveys. YlinĂ€ytteistyssuhde on 25 ja AD muuntimen nĂ€ytteistystaajuus 768 MHz. Tavoitteena on saavuttaa teoreettinen 55 dB signaalikohinasuhde (SNR). TĂ€mĂ€ työ keskittyy jatkuva-aikaisen sigma delta -modulaattorin suunnitteluun ja toteutukseen, perustuen diskreettiaikaisen Ʃ∆-modulaattorin periaatteisiin ja systeemitason simulointiin ja mallitukseen. Jatkuva-aikaisen sigma delta -modulaattorin kertoimien laskentamenetelmĂ€ esitetÀÀn yksityiskohtaisesti, ja vaatimusten tĂ€yttyminen varmistetaan “top-down” -suunnitteluperiaatteella. LiitteenĂ€ on kertoimien laskemiseen kĂ€ytetty MATLAB-koodi. Jatkuva-aikaisten sigma delta -modulaattoreiden erityishaasteiden, liian pitkĂ€n silmukkaviiveen ja kellojitterin herkkyyden, voittamiseksi tutkitaan kahta strategiaa, viiveen kompensointipolkua ja FIR takaisinkytkentĂ€ -DA muunninta. Viivekompensointipolkua kĂ€yttĂ€mĂ€llĂ€ modulaattorin stabiilisuus ja kohinansuodatusfunktio saadaan varmistettua ja korjattua. LisĂ€ksi FIR takaisinkytkentĂ€ -DA-muuntimen kĂ€yttö pienentÀÀ kellojitteriherkkyyttĂ€, parantaen jatkuva aikaisen sigma delta -modulaattorin kokonaissuorituskykyĂ€ ja luotettavuutta. Toteutetuissa jatkuva-aikaisissa sigma delta -modulaattoreissa on kytketty perĂ€kkĂ€in integraattoreita myötĂ€kytkentĂ€rakenteella (CIFF) ja toisessa sekĂ€ myötĂ€- ettĂ€ takaisinkytkentĂ€rakenteella (CIFF-B). PÀÀhuomio on CIFF-B rakenteessa, joka toteutetaan 22nm CMOS prosessissa kĂ€yttĂ€en 0.8 voltin kĂ€yttöjĂ€nnitettĂ€. Suorityskyky varmistetaan erilaisilla simuloinneilla, joiden perusteella 55 dB SNR saavutetaan 1.36 mW tehonkulutuksella. LisĂ€ksi kohinanmuokkausfunktion optimoinnilla SNR saadaan nostettua 62 desibeliin

    Novel design strategies and architectures for continuous-time Sigma-Delta modulators

    Get PDF

    Power and area efficient reconfigurable delta sigma ADCs

    Get PDF

    Mixed-Signal Circuits Modelling and Simulations Using Matlab

    Get PDF

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 ÎŒW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    High-Speed Delta-Sigma Data Converters for Next-Generation Wireless Communication

    Get PDF
    In recent years, Continuous-time Delta-Sigma(CT-ΔΣ) analog-to-digital converters (ADCs) have been extensively investigated for their use in wireless receivers to achieve conversion bandwidths greater than 15 MHz and higher resolution of 10 to 14 bits. This dissertation investigates the current state-of-the-art high-speed single-bit and multi-bit Continuous-time Delta-Sigma modulator (CT-ΔΣM) designs and their limitations due to circuit non-idealities in achieving the performance required for next-generation wireless standards. Also, we presented complete architectural and circuit details of a high-speed single-bit and multi-bit CT-ΔΣM operating at a sampling rate of 1.25 GSps and 640 MSps respectively (the highest reported sampling rate in a 0.13 ÎŒm CMOS technology node) with measurement results. Further, we propose novel hybrid ΔΣ architecture with two-step quantizer to alleviate the bandwidth and resolution bottlenecks associated with the contemporary CT-ΔΣM topologies. To facilitate the design with the proposed architecture, a robust systematic design method is introduced to determine the loop-filter coefficients by taking into account the non-ideal integrator response, such as the finite opamp gain and the presence of multiple parasitic poles and zeros. Further, comprehensive system-level simulation is presented to analyze the effect of two-step quantizer non-idealities such as the offset and gain error in the sub-ADCs, and the current mismatch between the MSB and LSB elements in the feedback DAC. The proposed novel architecture is demonstrated by designing a high-speed wideband 4th order CT-ΔΣ modulator prototype, employing a two-step quantizer with 5-bits resolution. The proposed modulator takes advantage of the combination of a high-resolution two-step quantization technique and an excess-loop delay (ELD) compensation of more than one clock cycle to achieve lower-power consumption (28 mW), higher dynamic range (\u3e69 dB) with a wide conversion bandwidth (20 MHz), even at a lower sampling rate of 400 MHz. The proposed modulator achieves a Figure of Merit (FoM) of 340 fJ/level

    High Performance Integrated Circuit Blocks for High-IF Wideband Receivers

    Get PDF
    Due to the demand for high‐performance radio frequency (RF) integrated circuit design in the past years, a system‐on‐chip (SoC) that enables integration of analog and digital parts on the same die has become the trend of the microelectronics industry. As a result, a major requirement of the next generation of wireless devices is to support multiple standards in the same chip‐set. This would enable a single device to support multiple peripheral applications and services. Based on the aforementioned, the traditional superheterodyne front‐end architecture is not suitable for such applications as it would require a complete receiver for each standard to be supported. A more attractive alternative is the highintermediate frequency (IF) radio architecture. In this case the signal is digitalized at an intermediate frequency such as 200MHz. As a consequence, the baseband operations, such as down‐conversion and channel filtering, become more power and area efficient in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the bottlenecks in this system. The requirements of large bandwidth, high frequency and enough resolution make such ADC very difficult to realize. Many ADC architectures were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was found to be the most suitable solution in the high‐IF receiver architecture since they combine oversampling and noise shaping to get fairly high resolution in a limited bandwidth. A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐ temperature (PVT) tolerances that lead to over 20% pole variations compared to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting for center frequency deviations, excess loop delay, and DAC coefficients. Due to these undesirable effects, a calibration algorithm is necessary to compensate for these variations in order to achieve high SNR requirements as technology shrinks. In this work, a novel linearization technique for a Wideband Low‐Noise Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm, respectively. The power consumption of the LNA is 5.8mA from 2V. Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800 MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A novel transconductance amplifier has been developed to achieve high linearity and high dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard analog CMOS technology. Post‐layout simulations in cadence demonstrate that the modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth. The modulator’s static power consumption is 107mW from a supply power of ± 0.9V. Finally, a calibration technique for the optimization of the Noise Transfer Function CT BP ΣΔ modulators is presented. The proposed technique employs two test tones applied at the input of the quantizer to evaluate the noise transfer function of the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed‐mode systems. Once the ADC output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐ Mean Squared (LMS) software‐based algorithm. Since the two tones are located outside the band of interest, the proposed global calibration approach can be used online with no significant effect on the in‐band content

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver
    • 

    corecore