4 research outputs found

    Systemunterstützung für moderne Speichertechnologien

    Get PDF
    Trust and scalability are the two significant factors which impede the dissemination of clouds. The possibility of privileged access to customer data by a cloud provider limits the usage of clouds for processing security-sensitive data. Low latency cloud services rely on in-memory computations, and thus, are limited by several characteristics of Dynamic RAM (DRAM) such as capacity, density, energy consumption, for example. Two technological areas address these factors. Mainstream server platforms, such as Intel Software Guard eXtensions (SGX) und AMD Secure Encrypted Virtualisation (SEV) offer extensions for trusted execution in untrusted environments. Various technologies of Non-Volatile RAM (NV-RAM) have better capacity and density compared to DRAM and thus can be considered as DRAM alternatives in the future. However, these technologies and extensions require new programming approaches and system support since they add features to the system architecture: new system components (Intel SGX) and data persistence (NV-RAM). This thesis is devoted to the programming and architectural aspects of persistent and trusted systems. For trusted systems, an in-depth analysis of new architectural extensions was performed. A novel framework named EActors and a database engine named STANlite were developed to effectively use the capabilities of trusted~execution. For persistent systems, an in-depth analysis of prospective memory technologies, their features and the possible impact on system architecture was performed. A new persistence model, called the hypervisor-based model of persistence, was developed and evaluated by the NV-Hypervisor. This offers transparent persistence for legacy and proprietary software, and supports virtualisation of persistent memory.Vertrauenswürdigkeit und Skalierbarkeit sind die beiden maßgeblichen Faktoren, die die Verbreitung von Clouds behindern. Die Möglichkeit privilegierter Zugriffe auf Kundendaten durch einen Cloudanbieter schränkt die Nutzung von Clouds bei der Verarbeitung von sicherheitskritischen und vertraulichen Informationen ein. Clouddienste mit niedriger Latenz erfordern die Durchführungen von Berechnungen im Hauptspeicher und sind daher an Charakteristika von Dynamic RAM (DRAM) wie Kapazität, Dichte, Energieverbrauch und andere Aspekte gebunden. Zwei technologische Bereiche befassen sich mit diesen Faktoren: Etablierte Server Plattformen wie Intel Software Guard eXtensions (SGX) und AMD Secure Encrypted Virtualisation (SEV) stellen Erweiterungen für vertrauenswürdige Ausführung in nicht vertrauenswürdigen Umgebungen bereit. Verschiedene Technologien von nicht flüchtigem Speicher bieten bessere Kapazität und Speicherdichte verglichen mit DRAM, und können daher in Zukunft als Alternative zu DRAM herangezogen werden. Jedoch benötigen diese Technologien und Erweiterungen neuartige Ansätze und Systemunterstützung bei der Programmierung, da diese der Systemarchitektur neue Funktionalität hinzufügen: Systemkomponenten (Intel SGX) und Persistenz (nicht-flüchtiger Speicher). Diese Dissertation widmet sich der Programmierung und den Architekturaspekten von persistenten und vertrauenswürdigen Systemen. Für vertrauenswürdige Systeme wurde eine detaillierte Analyse der neuen Architekturerweiterungen durchgeführt. Außerdem wurden das neuartige EActors Framework und die STANlite Datenbank entwickelt, um die neuen Möglichkeiten von vertrauenswürdiger Ausführung effektiv zu nutzen. Darüber hinaus wurde für persistente Systeme eine detaillierte Analyse zukünftiger Speichertechnologien, deren Merkmale und mögliche Auswirkungen auf die Systemarchitektur durchgeführt. Ferner wurde das neue Hypervisor-basierte Persistenzmodell entwickelt und mittels NV-Hypervisor ausgewertet, welches transparente Persistenz für alte und proprietäre Software, sowie Virtualisierung von persistentem Speicher ermöglicht

    Protecting applications using trusted execution environments

    Get PDF
    While cloud computing has been broadly adopted, companies that deal with sensitive data are still reluctant to do so due to privacy concerns or legal restrictions. Vulnerabilities in complex cloud infrastructures, resource sharing among tenants, and malicious insiders pose a real threat to the confidentiality and integrity of sensitive customer data. In recent years trusted execution environments (TEEs), hardware-enforced isolated regions that can protect code and data from the rest of the system, have become available as part of commodity CPUs. However, designing applications for the execution within TEEs requires careful consideration of the elevated threats that come with running in a fully untrusted environment. Interaction with the environment should be minimised, but some cooperation with the untrusted host is required, e.g. for disk and network I/O, via a host interface. Implementing this interface while maintaining the security of sensitive application code and data is a fundamental challenge. This thesis addresses this challenge and discusses how TEEs can be leveraged to secure existing applications efficiently and effectively in untrusted environments. We explore this in the context of three systems that deal with the protection of TEE applications and their host interfaces: SGX-LKL is a library operating system that can run full unmodified applications within TEEs with a minimal general-purpose host interface. By providing broad system support inside the TEE, the reliance on the untrusted host can be reduced to a minimal set of low-level operations that cannot be performed inside the enclave. SGX-LKL provides transparent protection of the host interface and for both disk and network I/O. Glamdring is a framework for the semi-automated partitioning of TEE applications into an untrusted and a trusted compartment. Based on source-level annotations, it uses either dynamic or static code analysis to identify sensitive parts of an application. Taking into account the objectives of a small TCB size and low host interface complexity, it defines an application-specific host interface and generates partitioned application code. EnclaveDB is a secure database using Intel SGX based on a partitioned in-memory database engine. The core of EnclaveDB is its logging and recovery protocol for transaction durability. For this, it relies on the database log managed and persisted by the untrusted database server. EnclaveDB protects against advanced host interface attacks and ensures the confidentiality, integrity, and freshness of sensitive data.Open Acces

    Verbesserung von Cloud Sicherheit mithilfe von vertrauenswürdiger Ausführung

    Get PDF
    The increasing popularity of cloud computing also leads to a growing demand for security guarantees in cloud settings. Cloud customers want to be able to execute sensitive data processing in clouds only if a certain level of security can be guaranteed to them despite the unlimited power of the cloud provider over her infrastructure. However, security models for cloud computing mostly require the customers to trust the provider, its infrastructure and software stack completely. While this may be viable to some, it is by far not to all customers, and in turn reduces the speed of cloud adoption. In this thesis, the applicability of trusted execution technology to increase security in a cloud scenario is elaborated, as these technologies are recently becoming widespread available even in commodity hardware. However, applications should not naively be ported completely for usage of trusted execution technology as this would affect the resulting performance and security negatively. Instead they should be carefully crafted with specific characteristics of the used trusted execution technology in mind. Therefore, this thesis first comprises the discussion of various security goals of cloud-based applications and an overview of cloud security. Furthermore, it is investigated how the ARM TrustZone technology can be used to increase security of a cloud platform for generic applications. Next, securing standalone applications using trusted execution is described at the example of Intel SGX, focussing on relevant metrics that influence security as well as performance of such an application. Also based on Intel SGX, in this thesis a design of a trusted serverless cloud platform is proposed, reflecting the latest evolution of cloud-based applications.Die steigende Popularität von Cloud Computing führt zu immer mehr Nachfrage und auch strengeren Anforderungen an die Sicherheit in der Cloud. Nur wenn trotz der technischen Möglichkeiten eines Cloud Anbieters über seine eigene Infrastruktur ein entsprechendes Maß an Sicherheit garantiert werden kann, können Cloud Kunden sensible Daten einer Cloud Umgebung anvertrauen und diese dort verarbeiten. Das vorherrschende Paradigma bezüglich Sicherheit erfordert aktuell jedoch zumeist, dass der Kunde dem Cloud Provider, dessen Infrastruktur sowie den damit verbundenen Softwarekomponenten komplett vertraut. Während diese Vorgehensweise für manche Anwendungsfälle einen gangbaren Weg darstellen mag, ist dies bei Weitem nicht für alle Cloud Kunden eine Option, was nicht zuletzt auch die Annahme von Cloud Angeboten durch potentielle Kunden verlangsamt. In dieser Dissertation wird nun die Anwendbarkeit verschiedener Technologien für vertrauenswürdige Ausführung zur Verbesserung der Sicherheit in der Cloud untersucht, da solche Technologien in letzter Zeit auch in preiswerteren Hardwarekomponenten immer verbreiteter und verfügbarer werden. Es ist jedoch keine triviale Aufgabe existierende Anwendungen zur portieren, sodass diese von solch gearteten Technologien profitieren können, insbesondere wenn neben Sicherheit auch Effizienz und Performanz der Anwendung berücksichtigt werden soll. Stattdessen müssen Anwendungen sorgfältig unter verschiedenen spezifischen Gesichtspunkten der jeweiligen Technologie umgestaltet werden. Aus diesem Grund umfasst diese Dissertation zunächst eine Diskussion verschiedener Sicherheitsziele für Cloud-basierte Anwendungen und eine Übersicht über die Thematik "Cloud Sicherheit". Zunächst wird dann das Potential der ARM TrustZone Technologie zur Absicherung einer Cloud Plattform für generische Anwendungen untersucht. Anschließend wird beschrieben wie eigenständige und bestehende Anwendungen mittels vertrauenswürdiger Ausführung am Beispiel Intel SGX abgesichert werden können. Dabei wurde der Fokus auf relevante Metriken gesetzt, die die Sicherheit und Performanz einer solchen Anwendung beeinflussen. Zuletzt wird, ebenfalls basierend auf Intel SGX, eine vertrauenswürdige "Serverless" Cloud Plattform vorgestellt und damit auf aktuelle Trends für Cloud Plattformen eingegangen
    corecore