556 research outputs found

    Bacteria Hunt: Evaluating multi-paradigm BCI interaction

    Get PDF
    The multimodal, multi-paradigm brain-computer interfacing (BCI) game Bacteria Hunt was used to evaluate two aspects of BCI interaction in a gaming context. One goal was to examine the effect of feedback on the ability of the user to manipulate his mental state of relaxation. This was done by having one condition in which the subject played the game with real feedback, and another with sham feedback. The feedback did not seem to affect the game experience (such as sense of control and tension) or the objective indicators of relaxation, alpha activity and heart rate. The results are discussed with regard to clinical neurofeedback studies. The second goal was to look into possible interactions between the two BCI paradigms used in the game: steady-state visually-evoked potentials (SSVEP) as an indicator of concentration, and alpha activity as a measure of relaxation. SSVEP stimulation activates the cortex and can thus block the alpha rhythm. Despite this effect, subjects were able to keep their alpha power up, in compliance with the instructed relaxation task. In addition to the main goals, a new SSVEP detection algorithm was developed and evaluated

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from ten healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs

    Steady-State movement related potentials for brain–computer interfacing

    Get PDF
    An approach for brain-computer interfacing (BCI) by analysis of steady-state movement related potentials (ssMRPs) produced during rhythmic finger movements is proposed in this paper. The neurological background of ssMRPs is briefly reviewed. Averaged ssMRPs represent the development of a lateralized rhythmic potential, and the energy of the EEG signals at the finger tapping frequency can be used for single-trial ssMRP classification. The proposed ssMRP-based BCI approach is tested using the classic Fisher's linear discriminant classifier. Moreover, the influence of the current source density transform on the performance of BCI system is investigated. The averaged correct classification rates (CCRs) as well as averaged information transfer rates (ITRs) for different sliding time windows are reported. Reliable single-trial classification rates of 88%-100% accuracy are achievable at relatively high ITRs. Furthermore, we have been able to achieve CCRs of up to 93% in classification of the ssMRPs recorded during imagined rhythmic finger movements. The merit of this approach is in the application of rhythmic cues for BCI, the relatively simple recording setup, and straightforward computations that make the real-time implementations plausible

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Practical Brain Computer Interfacing

    Get PDF
    A brain-computer interface (BCI) is a communication system that enables users to voluntary send messages or commands without movement. The classical goal of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of computer cursors, spelling programs or external devices, such as wheelchairs, robots and neural prostheses. The user sends modulated information to the BCI by engaging in mental tasks that produce distinct brain patterns. The BCI acquires signals from the user's brain and translates them into suitable communication. This dissertation aims to develop faster and more reliable non-invasive BCI communication based on the study of users learning process and their interaction with the BCI transducer. To date, BCI research has focused on the development of advanced pattern recognition and classification algorithms to improve accuracy and reliability of the classified patterns. However, even with optimal detection methods, successful BCI operation depends on the degree to which the users can voluntary modulate their brain signals. Therefore, learning to operate a BCI requires repeated practice with feedback that engages learning mechanisms in the brain. In this work, several aspects including signal processing techniques, feedback methods, experimental and training protocols, demographics, and applications were explored and investigated. Research was focused on two BCI paradigms, steady-state visual evoked potentials (SSVEP) and event-related (de-)synchronization (ERD/ERS). Signal processing algorithms for the detection of both brain patterns were applied and evaluated. A general application interface for BCI feedback tasks was developed to evaluate the practicability, reliability and acceptance of new feedback methods. The role of feedback and training was fully investigated on studies conducted with healthy subjects. The influence of demographics on BCIs was explored in two field studies with a large number of subjects. Results were supported through advanced statistical analysis. Furthermore, the BCI control was evaluated in a spelling application and a service robotic application. This dissertation demonstrates that BCIs can provide effective communication for most subjects. Presented results showed that improvements in the BCI transducer, training protocols, and feedback methods constituted the basis to achieve faster and more reliable BCI communication. Nevertheless, expert assistance is necessary for both initial configuration and daily operation, which reduces the practicability of BCIs for people who really need them

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms
    • …
    corecore