508 research outputs found

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    ParMooN - a modernized program package based on mapped finite elements

    Get PDF
    {\sc ParMooN} is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor {\sc MooNMD} \cite{JM04}: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization for a distributed memory environment, which is the main novelty of {\sc ParMooN}. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with some parallel solvers that are available in the library {\sc PETSc}. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.Comment: partly supported by European Union (EU), Horizon 2020, Marie Sk{\l}odowska-Curie Innovative Training Networks (ITN-EID), MIMESIS, grant number 67571

    ParMooN - a modernized program package based on mapped finite elements

    Get PDF
    PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that are available in external libraries. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not
    corecore