2,478 research outputs found

    DERMATOLOGICAL IMAGE DENOISING USING ADAPTIVE HENLM METHOD

    Get PDF
    In this paper we propose automatic image denoising method based on Hermite functions (HeNLM). It is an extension of non-local means (NLM) algorithm. Differences between small image blocks (patches) are replaced by differences between feature vectors thus reducing computational complexity. The features are calculated in coordinate system connected with image gradient and are invariant to patch rotation. HeNLM method depends on the parameter that controls filtering strength. To chose automatically this parameter we use a no-reference denoising quality assessment method. It is based on Hessian matrix analysis. We compare the proposed method with full-reference methods using PSNR metrics, SSIM metrics, and its modifications MSSIM and CMSC. Image databases TID, DRIVE, BSD, and a set of dermatological immunofluorescence microscopy images were used for the tests. It was found that more perceptual CMSC and MSSIM metrics give worse correspondence than SSIM and PSNR to the results of information preservation by the non-reference image denoising

    CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration

    Full text link
    In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for â„“1\ell_1 regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a "twicing" flavor and allows re-fitting the restored signal by adding back a local affine transformation of the residual term. We illustrate the benefits of our method on numerical simulations for image restoration tasks

    Medical image denoising using convolutional denoising autoencoders

    Full text link
    Image denoising is an important pre-processing step in medical image analysis. Different algorithms have been proposed in past three decades with varying denoising performances. More recently, having outperformed all conventional methods, deep learning based models have shown a great promise. These methods are however limited for requirement of large training sample size and high computational costs. In this paper we show that using small sample size, denoising autoencoders constructed using convolutional layers can be used for efficient denoising of medical images. Heterogeneous images can be combined to boost sample size for increased denoising performance. Simplest of networks can reconstruct images with corruption levels so high that noise and signal are not differentiable to human eye.Comment: To appear: 6 pages, paper to be published at the Fourth Workshop on Data Mining in Biomedical Informatics and Healthcare at ICDM, 201

    A Research and Strategy of Remote Sensing Image Denoising Algorithms

    Full text link
    Most raw data download from satellites are useless, resulting in transmission waste, one solution is to process data directly on satellites, then only transmit the processed results to the ground. Image processing is the main data processing on satellites, in this paper, we focus on image denoising which is the basic image processing. There are many high-performance denoising approaches at present, however, most of them rely on advanced computing resources or rich images on the ground. Considering the limited computing resources of satellites and the characteristics of remote sensing images, we do some research on these high-performance ground image denoising approaches and compare them in simulation experiments to analyze whether they are suitable for satellites. According to the analysis results, we propose two feasible image denoising strategies for satellites based on satellite TianZhi-1.Comment: 9 pages, 4 figures, ICNC-FSKD 201

    Burst Denoising with Kernel Prediction Networks

    Full text link
    We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both align and denoise frames, a synthetic data generation approach based on a realistic noise formation model, and an optimization guided by an annealed loss function to avoid undesirable local minima. Our model matches or outperforms the state-of-the-art across a wide range of noise levels on both real and synthetic data.Comment: To appear in CVPR 2018 (spotlight). Project page: http://people.eecs.berkeley.edu/~bmild/kpn

    Artifact reduction for separable non-local means

    Full text link
    It was recently demonstrated [J. Electron. Imaging, 25(2), 2016] that one can perform fast non-local means (NLM) denoising of one-dimensional signals using a method called lifting. The cost of lifting is independent of the patch length, which dramatically reduces the run-time for large patches. Unfortunately, it is difficult to directly extend lifting for non-local means denoising of images. To bypass this, the authors proposed a separable approximation in which the image rows and columns are filtered using lifting. The overall algorithm is significantly faster than NLM, and the results are comparable in terms of PSNR. However, the separable processing often produces vertical and horizontal stripes in the image. This problem was previously addressed by using a bilateral filter-based post-smoothing, which was effective in removing some of the stripes. In this letter, we demonstrate that stripes can be mitigated in the first place simply by involving the neighboring rows (or columns) in the filtering. In other words, we use a two-dimensional search (similar to NLM), while still using one-dimensional patches (as in the previous proposal). The novelty is in the observation that one can use lifting for performing two-dimensional searches. The proposed approach produces artifact-free images, whose quality and PSNR are comparable to NLM, while being significantly faster.Comment: To appear in Journal of Electronic Imagin
    • …
    corecore