6,667 research outputs found

    A Multi-level Analysis on Implementation of Low-Cost IVF in Sub-Saharan Africa: A Case Study of Uganda.

    Get PDF
    Introduction: Globally, infertility is a major reproductive disease that affects an estimated 186 million people worldwide. In Sub-Saharan Africa, the burden of infertility is considerably high, affecting one in every four couples of reproductive age. Furthermore, infertility in this context has severe psychosocial, emotional, economic and health consequences. Absence of affordable fertility services in Sub-Saharan Africa has been justified by overpopulation and limited resources, resulting in inequitable access to infertility treatment compared to developed countries. Therefore, low-cost IVF (LCIVF) initiatives have been developed to simplify IVF-related treatment, reduce costs, and improve access to treatment for individuals in low-resource contexts. However, there is a gap between the development of LCIVF initiatives and their implementation in Sub-Saharan Africa. Uganda is the first country in East and Central Africa to undergo implementation of LCIVF initiatives within its public health system at Mulago Women’s Hospital. Methods: This was an exploratory, qualitative, single, case study conducted at Mulago Women’s Hospital in Kampala, Uganda. The objective of this study was to explore how LCIVF initiatives have been implemented within the public health system of Uganda at the macro-, meso- and micro-level. Primary qualitative data was collected using semi-structured interviews, hospital observations informal conversations, and document review. Using purposive and snowball sampling, a total of twenty-three key informants were interviewed including government officials, clinicians (doctors, nurses, technicians), hospital management, implementers, patient advocacy representatives, private sector practitioners, international organizational representatives, educational institution, and professional medical associations. Sources of secondary data included government and non-government reports, hospital records, organizational briefs, and press outputs. Using a multi-level data analysis approach, this study undertook a hybrid inductive/deductive thematic analysis, with the deductive analysis guided by the Consolidated Framework for Implementation Research (CFIR). Findings: Factors facilitating implementation included international recognition of infertility as a reproductive disease, strong political advocacy and oversight, patient needs & advocacy, government funding, inter-organizational collaboration, tension to change, competition in the private sector, intervention adaptability & trialability, relative priority, motivation &advocacy of fertility providers and specialist training. While barriers included scarcity of embryologists, intervention complexity, insufficient knowledge, evidence strength & quality of intervention, inadequate leadership engagement & hospital autonomy, poor public knowledge, limited engagement with traditional, cultural, and religious leaders, lack of salary incentives and concerns of revenue loss associated with low-cost options. Research contributions: This study contributes to knowledge of factors salient to implementation of LCIVF initiatives in a Sub-Saharan context. Effective implementation of these initiatives requires (1) sustained political support and favourable policy & legislation, (2) public sensitization and engagement of traditional, cultural, and religious leaders (3) strengthening local innovation and capacity building of fertility health workers, in particular embryologists (4) sustained implementor leadership engagement and inter-organizational collaboration and (5) proven clinical evidence and utilization of LCIVF initiatives in innovator countries. It also adds to the literature on the applicability of the CFIR framework in explaining factors that influence successful implementation in developing countries and offer opportunities for comparisons across studies

    Raising Critical Consciousness in Engineering Education: A Critical Exploration of Transformative Possibilities in Engineering Education and Research

    Get PDF
    This thesis represents a critical exploration of the opportunities, challenges, and barriers to enacting social justice via the engineering curriculum. Through an ethnographic case study of a British engineering for sustainable development course, I illuminate tensions and contradictions of attempts to “do good” while “doing engineering” in a higher education setting. This work is couched within critical and anti-colonial theoretical frames. Through critical and reflexive analysis, I illustrate attempts of participants to innovate in engineering education toward a counter-hegemonic engineering practice, and highlight transformative possibilities, as well as barriers. This case illustrates how the structures that formed modern engineering continue to shape engineering higher education, restraining attempts to transform engineering training for social good.A central question that has driven this work has been: Is it possible to cultivate a more socially just form of engineering practice through engineering higher education? The function of asking this question has been to interrogate a core assumption in engineering education research – that with the right blend of educational interventions, we can make strides towards social justice. My intent in interrogating this assumption is not to be nihilistic per se. I believe it is entirely possible that engineering could potentially be wielded for just cause and consequence. However, if we do not critically examine our core assumptions around this issue, we may also miss out on the possibility that socially just engineering is not achievable, at least in the way we are currently approaching it or in the current context within which it exists.An examination of this topic is already underway in the US context. However, it is under-explored in a British context. Given the different historical trajectories of engineering and engineering in higher education between these two contexts, a closer look at the British context is warranted

    Formal description of ML models for unambiguous implementation

    Full text link
    Implementing deep neural networks in safety critical systems, in particular in the aeronautical domain, will require to offer adequate specification paradigms to preserve the semantics of the trained model on the final hardware platform. We propose to extend the nnef language in order to allow traceable distribution and parallelisation optimizations of a trained model. We show how such a specification can be implemented in cuda on a Xavier platform

    Gettysburg Journal of Public Policy 2023

    Full text link
    Complete Issue of The Gettysburg Journal for Public Policy 202

    Operatic Pasticcios in 18th-Century Europe

    Get PDF
    In Early Modern times, techniques of assembling, compiling and arranging pre-existing material were part of the established working methods in many arts. In the world of 18th-century opera, such practices ensured that operas could become a commercial success because the substitution or compilation of arias fitting the singer's abilities proved the best recipe for fulfilling the expectations of audiences. Known as »pasticcios« since the 18th-century, these operas have long been considered inferior patchwork. The volume collects essays that reconsider the pasticcio, contextualize it, define its preconditions, look at its material aspects and uncover its aesthetical principles

    Denotationally Correct, Purely Functional, Efficient Reverse-mode Automatic Differentiation

    Full text link
    Reverse-mode differentiation is used for optimization, but it introduces references, which break the purity of the underlying programs, making them notoriously harder to optimize. We present a reverse-mode differentiation on a purely functional language with array operations. It is the first one to deliver a provably efficient, purely functional, and denotationally correct reverse-mode differentiation. We show that our transformation is semantically correct and verifies the cheap gradient principle. Inspired by PROPs and compilation to categories, we introduce a novel intermediate representation that we call 'unary form'. Our reverse-mode transformation is factored as a compilation scheme through this intermediate representation. We obtain provably efficient gradients by performing general partial evaluation optimizations after our reverse-mode transformation, as opposed to manually derived ones. For simple first-order programs, the obtained output programs resemble static-single-assignment (SSA) code. We emphasize the modularity of our approach and show how our language can easily be enriched with more optimized primitives, as required for some speed-ups in practice.Comment: 34 pages, 17 figure

    Deployment of Deep Neural Networks on Dedicated Hardware Accelerators

    Get PDF
    Deep Neural Networks (DNNs) have established themselves as powerful tools for a wide range of complex tasks, for example computer vision or natural language processing. DNNs are notoriously demanding on compute resources and as a result, dedicated hardware accelerators for all use cases are developed. Different accelerators provide solutions from hyper scaling cloud environments for the training of DNNs to inference devices in embedded systems. They implement intrinsics for complex operations directly in hardware. A common example are intrinsics for matrix multiplication. However, there exists a gap between the ecosystems of applications for deep learning practitioners and hardware accelerators. HowDNNs can efficiently utilize the specialized hardware intrinsics is still mainly defined by human hardware and software experts. Methods to automatically utilize hardware intrinsics in DNN operators are a subject of active research. Existing literature often works with transformationdriven approaches, which aim to establish a sequence of program rewrites and data-layout transformations such that the hardware intrinsic can be used to compute the operator. However, the complexity this of task has not yet been explored, especially for less frequently used operators like Capsule Routing. And not only the implementation of DNN operators with intrinsics is challenging, also their optimization on the target device is difficult. Hardware-in-the-loop tools are often used for this problem. They use latency measurements of implementations candidates to find the fastest one. However, specialized accelerators can have memory and programming limitations, so that not every arithmetically correct implementation is a valid program for the accelerator. These invalid implementations can lead to unnecessary long the optimization time. This work investigates the complexity of transformation-driven processes to automatically embed hardware intrinsics into DNN operators. It is explored with a custom, graph-based intermediate representation (IR). While operators like Fully Connected Layers can be handled with reasonable effort, increasing operator complexity or advanced data-layout transformation can lead to scaling issues. Building on these insights, this work proposes a novel method to embed hardware intrinsics into DNN operators. It is based on a dataflow analysis. The dataflow embedding method allows the exploration of how intrinsics and operators match without explicit transformations. From the results it can derive the data layout and program structure necessary to compute the operator with the intrinsic. A prototype implementation for a dedicated hardware accelerator demonstrates state-of-the art performance for a wide range of convolutions, while being agnostic to the data layout. For some operators in the benchmark, the presented method can also generate alternative implementation strategies to improve hardware utilization, resulting in a geo-mean speed-up of ×2.813 while reducing the memory footprint. Lastly, by curating the initial set of possible implementations for the hardware-in-the-loop optimization, the median timeto- solution is reduced by a factor of ×2.40. At the same time, the possibility to have prolonged searches due a bad initial set of implementations is reduced, improving the optimization’s robustness by ×2.35

    Using Rewrite Strategies for Efficient Functional Automatic Differentiation

    Full text link
    Automatic Differentiation (AD) has become a dominant technique in ML. AD frameworks have first been implemented for imperative languages using tapes. Meanwhile, functional implementations of AD have been developed, often based on dual numbers, which are close to the formal specification of differentiation and hence easier to prove correct. But these papers have focussed on correctness not efficiency. Recently, it was shown how an approach using dual numbers could be made efficient through the right optimizations. Optimizations are highly dependent on order, as one optimization can enable another. It can therefore be useful to have fine-grained control over the scheduling of optimizations. One method expresses compiler optimizations as rewrite rules, whose application can be combined and controlled using strategy languages. Previous work describes the use of term rewriting and strategies to generate high-performance code in a compiler for a functional language. In this work, we implement dual numbers AD in a functional array programming language using rewrite rules and strategy combinators for optimization. We aim to combine the elegance of differentiation using dual numbers with a succinct expression of the optimization schedule using a strategy language. We give preliminary evidence suggesting the viability of the approach on a micro-benchmark.Comment: to be published in FTfJP 202

    Knowledge-based Modelling of Additive Manufacturing for Sustainability Performance Analysis and Decision Making

    Get PDF
    Additiivista valmistusta on pidetty käyttökelpoisena monimutkaisissa geometrioissa, topologisesti optimoiduissa kappaleissa ja kappaleissa joita on muuten vaikea valmistaa perinteisillä valmistusprosesseilla. Eduista huolimatta, yksi additiivisen valmistuksen vallitsevista haasteista on ollut heikko kyky tuottaa toimivia osia kilpailukykyisillä tuotantomäärillä perinteisen valmistuksen kanssa. Mallintaminen ja simulointi ovat tehokkaita työkaluja, jotka voivat auttaa lyhentämään suunnittelun, rakentamisen ja testauksen sykliä mahdollistamalla erilaisten tuotesuunnitelmien ja prosessiskenaarioiden nopean analyysin. Perinteisten ja edistyneiden valmistusteknologioiden mahdollisuudet ja rajoitukset määrittelevät kuitenkin rajat uusille tuotekehityksille. Siksi on tärkeää, että suunnittelijoilla on käytettävissään menetelmät ja työkalut, joiden avulla he voivat mallintaa ja simuloida tuotteen suorituskykyä ja siihen liittyvän valmistusprosessin suorituskykyä, toimivien korkea arvoisten tuotteiden toteuttamiseksi. Motivaation tämän väitöstutkimuksen tekemiselle on, meneillään oleva kehitystyö uudenlaisen korkean lämpötilan suprajohtavan (high temperature superconducting (HTS)) magneettikokoonpanon kehittämisessä, joka toimii kryogeenisissä lämpötiloissa. Sen monimutkaisuus edellyttää monitieteisen asiantuntemuksen lähentymistä suunnittelun ja prototyyppien valmistuksen aikana. Tutkimus hyödyntää tietopohjaista mallinnusta valmistusprosessin analysoinnin ja päätöksenteon apuna HTS-magneettien mekaanisten komponenttien suunnittelussa. Tämän lisäksi, tutkimus etsii mahdollisuuksia additiivisen valmistuksen toteutettavuuteen HTS-magneettikokoonpanon tuotannossa. Kehitetty lähestymistapa käyttää fysikaalisiin kokeisiin perustuvaa tuote-prosessi-integroitua mallinnusta tuottamaan kvantitatiivista ja laadullista tietoa, joka määrittelee prosessi-rakenne-ominaisuus-suorituskyky-vuorovaikutuksia tietyille materiaali-prosessi-yhdistelmille. Tuloksina saadut vuorovaikutukset integroidaan kaaviopohjaiseen malliin, joka voi auttaa suunnittelutilan tutkimisessa ja täten auttaa varhaisessa suunnittelu- ja valmistuspäätöksenteossa. Tätä varten testikomponentit valmistetaan käyttämällä kahta metallin additiivista valmistus prosessia: lankakaarihitsaus additiivista valmistusta (wire arc additive manufacturing) ja selektiivistä lasersulatusta (selective laser melting). Rakenteellisissa sovelluksissa yleisesti käytetyistä metalliseoksista (ruostumaton teräs, pehmeä teräs, luja niukkaseosteinen teräs, alumiini ja kupariseokset) testataan niiden mekaaniset, lämpö- ja sähköiset ominaisuudet. Lisäksi tehdään metalliseosten mikrorakenteen karakterisointi, jotta voidaan ymmärtää paremmin valmistusprosessin parametrien vaikutusta materiaalin ominaisuuksiin. Integroitu mallinnustapa yhdistää kerätyn kokeellisen tiedon, olemassa olevat analyyttiset ja empiiriset vuorovaikutus suhteet, sekä muut tietopohjaiset mallit (esim. elementtimallit, koneoppimismallit) päätöksenteon tukijärjestelmän muodossa, joka mahdollistaa optimaalisen materiaalin, valmistustekniikan, prosessiparametrien ja muitten ohjausmuuttujien valinnan, lopullisen 3d-tulosteun komponentin halutun rakenteen, ominaisuuksien ja suorituskyvyn saavuttamiseksi. Valmistuspäätöksenteko tapahtuu todennäköisyysmallin, eli Bayesin verkkomallin toteuttamisen kautta, joka on vankka, modulaarinen ja sovellettavissa muihin valmistusjärjestelmiin ja tuotesuunnitelmiin. Väitöstyössä esitetyn mallin kyky parantaa additiivisien valmistusprosessien suorituskykyä ja laatua, täten edistää kestävän tuotannon tavoitteita.Additive manufacturing (AM) has been considered viable for complex geometries, topology optimized parts, and parts that are otherwise difficult to produce using conventional manufacturing processes. Despite the advantages, one of the prevalent challenges in AM has been the poor capability of producing functional parts at production volumes that are competitive with traditional manufacturing. Modelling and simulation are powerful tools that can help shorten the design-build-test cycle by enabling rapid analysis of various product designs and process scenarios. Nevertheless, the capabilities and limitations of traditional and advanced manufacturing technologies do define the bounds for new product development. Thus, it is important that the designers have access to methods and tools that enable them to model and simulate product performance and associated manufacturing process performance to realize functional high value products. The motivation for this dissertation research stems from ongoing development of a novel high temperature superconducting (HTS) magnet assembly, which operates in cryogenic environment. Its complexity requires the convergence of multidisciplinary expertise during design and prototyping. The research applies knowledge-based modelling to aid manufacturing process analysis and decision making in the design of mechanical components of the HTS magnet. Further, it explores the feasibility of using AM in the production of the HTS magnet assembly. The developed approach uses product-process integrated modelling based on physical experiments to generate quantitative and qualitative information that define process-structure-property-performance interactions for given material-process combinations. The resulting interactions are then integrated into a graph-based model that can aid in design space exploration to assist early design and manufacturing decision-making. To do so, test components are fabricated using two metal AM processes: wire and arc additive manufacturing and selective laser melting. Metal alloys (stainless steel, mild steel, high-strength low-alloyed steel, aluminium, and copper alloys) commonly used in structural applications are tested for their mechanical-, thermal-, and electrical properties. In addition, microstructural characterization of the alloys is performed to further understand the impact of manufacturing process parameters on material properties. The integrated modelling approach combines the collected experimental data, existing analytical and empirical relationships, and other data-driven models (e.g., finite element models, machine learning models) in the form of a decision support system that enables optimal selection of material, manufacturing technology, process parameters, and other control variables for attaining desired structure, property, and performance characteristics of the final printed component. The manufacturing decision making is performed through implementation of a probabilistic model i.e., a Bayesian network model, which is robust, modular, and can be adapted for other manufacturing systems and product designs. The ability of the model to improve throughput and quality of additive manufacturing processes will boost sustainable manufacturing goals

    Learning Self-Regulation Questionnaire (SRQ-L): Psychometric and Measurement Invariance Evidence in Peruvian Undergraduate Students

    Get PDF
    Given the theoretical and applied importance of self-regulation in learning, our study aimed to report the internal structure of the psychometric properties of the Learning Self-Regulation Questionnaire. Five hundred and ninety-six Peruvian university students participated in their first to tenth semesters on campuses in Lima, Trujillo, and Cajamarca. Nonparametric scalability, dimensionality, reliability (score and item levels), and latent invariance were analyzed. The results showed that reducing the number of response options was necessary. Reducing the number of items also produced better scaling. Two slightly related dimensions were strong internal validity and acceptable item reliability; furthermore, reliability was adequate. Age and gender had trivial correlations in item variability. Finally, differences between the semesters were obtained in the means, variances, and latent correlations. In conclusion, we propose a better definition of the constructs of autonomy and control measured by the SRQ-L. This article also discusses the limitations and implications of the study
    corecore