65 research outputs found

    Using pMOS Pass-Gates to Boost SRAM Performance by Exploiting Strain Effects in Sub-20-nm FinFET Technologies

    Get PDF
    Strained fin is one of the techniques used to improve the devices as their size keeps reducing in new nanoscale nodes. In this paper, we use a predictive technology of 14 nm where pMOS mobility is significantly improved when those devices are built on top of long, uncut fins, while nMOS devices present the opposite behavior due to the combination of strains. We explore the possibility of boosting circuit performance in repetitive structures where long uncut fins can be exploited to increase fin strain impact. In particular, pMOS pass-gates are used in 6T complementary SRAM cells (CSRAM) with reinforced pull-ups. Those cells are simulated under process variability and compared to the regular SRAM. We show that when layout dependent effects are considered the CSRAM design provides 10% to 40% faster access time while keeping the same area, power, and stability than a regular 6T SRAM cell. The conclusions also apply to 8T SRAM cells. The CSRAM cell also presents increased reliability in technologies whose nMOS devices have more mismatch than pMOS transistors

    ULP Variability-insensitive SRAM design in sub-32nm UTBB FDSOI CMOS

    Get PDF
    International audienceThis paper describes a design approach based on optimization of embedded SRAMs that takes advantage of an Ultra-Thin Body and Box (UTBB) Fully-Depleted (FD) SOI CMOS process. Optimization is performed on an analytical model including statistical variations for Static Noise Margin (SNM) of CMOS SRAMs operating in subthreshold. Distributions of retention and read SNM are derived as a function of VTN and VTP. Improvements of up to 2x of the retention- and read-mode SNM µ/σ are obtained by optimizing the VTN/VTP ratio with back bias

    Stability oriented SRAM performance optimization in subthreshold operation

    Get PDF
    International audienceIn this work we are analyzing the 6T SRAM cell operation in subthreshold in 32nm UTBB-FDSOI technology. The set of accurate equations describing the subthreshold SRAM cell behaviour in read and write are presented. Using these equations, the optimum tradeoffs between cell transistors VTs for best stability in subthreshold for read and retention are illustrated revealing write stability as the main limiting factor for low VDD operation. The analysis of write assist technique efficiency reveals, that setting the bitline voltage -0.1V gives the write μ/σ=5.66, while maintaining read μ/σ>9. The magnitude of write assist technique application can be further limited by modifying the VTs of SRAM cell transistors by increasing initial write stability while maintaining read μ/σ>6

    A yield centric statistical design method for optimization of the SRAM active column

    Full text link
    For robust design of SRAM memories, it is not sufficient to guarantee good statistical margins on the SRAM cell parameters. The sense amplifier needs sufficient input signal before it can reliably sense the data, while the SRAM cell requires sufficient time to develop that input signal. This paper presents a new statistical method that allows optimization of the access time of an SRAM memory, while guaranteeing a yield target set by the designer. Using this method, the access time of a high performance advanced CMOS SRAM has been improved 6%, while simultaneously reducing the sense amplifier siz

    Impact of self-heating on the statistical variability in bulk and SOI FinFETs

    Get PDF
    In this paper for the first time we study the impact of self-heating on the statistical variability of bulk and SOI FinFETs designed to meet the requirements of the 14/16nm technology node. The simulations are performed using the GSS ‘atomistic’ simulator GARAND using an enhanced electro-thermal model that takes into account the impact of the fin geometry on the thermal conductivity. In the simulations we have compared the statistical variability obtained from full-scale electro-thermal simulations with the variability at uniform room temperature and at the maximum or average temperatures obtained in the electro-thermal simulations. The combined effects of line edge roughness and metal gate granularity are taken into account. The distributions and the correlations between key figures of merit including the threshold voltage, on-current, subthreshold slope and leakage current are presented and analysed

    Process-tolerant VLSI neural networks for applications in optimisation

    Get PDF

    6T-SRAM 1Mb Design with Test Structures and Post Silicon Validation

    Get PDF
    abstract: Static random-access memories (SRAM) are integral part of design systems as caches and data memories that and occupy one-third of design space. The work presents an embedded low power SRAM on a triple well process that allows body-biasing control. In addition to the normal mode operation, the design is embedded with Physical Unclonable Function (PUF) [Suh07] and Sense Amplifier Test (SA Test) mode. With PUF mode structures, the fabrication and environmental mismatches in bit cells are used to generate unique identification bits. These bits are fixed and known as preferred state of an SRAM bit cell. The direct access test structure is a measurement unit for offset voltage analysis of sense amplifiers. These designs are manufactured using a foundry bulk CMOS 55 nm low-power (LP) process. The details about SRAM bit-cell and peripheral circuit design is discussed in detail, for certain cases the circuit simulation analysis is performed with random variations embedded in SPICE models. Further, post-silicon testing results are discussed for normal operation of SRAMs and the special test modes. The silicon and circuit simulation results for various tests are presented.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Characterization and mitigation of process variation in digital circuits and systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-166).Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of the variation sources, magnitudes and spatial components at the device, circuit and architectural levels. This thesis explores the impacts of variation at each of these levels and evaluates techniques to alleviate them in the context of digital circuits and systems. At the device level, we propose isolation and measurement of variation in the intrinsic threshold voltage of a MOSFET using sub-threshold leakage currents. Analysis of the measured data, from a test-chip implemented on a 0. 18[mu]m CMOS process, indicates that variation in MOSFET threshold voltage is a truly random process dependent only on device dimensions. Further decomposition of the observed variation reveals no systematic within-die variation components nor any spatial correlation. A second test-chip capable of characterizing spatial variation in digital circuits is developed and implemented in a 90nm triple-well CMOS process. Measured variation results show that the within-die component of variation is small at high voltages but is an increasing fraction of the total variation as power-supply voltage decreases. Once again, the data shows no evidence of within-die spatial correlation and only weak systematic components. Evaluation of adaptive body-biasing and voltage scaling as variation mitigation techniques proves voltage scaling is more effective in performance modification with reduced impact to idle power compared to body-biasing.(cont.) Finally, the addition of power-supply voltages in a massively parallel multicore processor is explored to reduce the energy required to cope with process variation. An analytic optimization framework is developed and analyzed; using a custom simulation methodology, total energy of a hypothetical 1K-core processor based on the RAW core is reduced by 6-16% with the addition of only a single voltage. Analysis of yield versus required energy demonstrates that a combination of disabling poor-performing cores and additional power-supply voltages results in an optimal trade-off between performance and energy.by Nigel Anthony Drego.Ph.D

    Efficient Aging-aware Failure Probability Estimation Using Augmented Reliability and Subset Simulation

    Get PDF
    A circuit-aging simulation that efficiently calculates temporal change of rare circuit-failure probability is proposed. While conventional methods required a long computational time due to the necessity of conducting separate calculations of failure probability at each device age, the proposed Monte Carlo based method requires to run only a single set of simulation. By applying the augmented reliability and subset simulation framework, the change of failure probability along the lifetime of the device can be evaluated through the analysis of the Monte Carlo samples. Combined with the two-step sample generation technique, the proposed method reduces the computational time to about 1/6 of that of the conventional method while maintaining a sufficient estimation accuracy
    corecore