51 research outputs found

    Face Recognition Under Varying Illumination

    Get PDF
    This study is a result of a successful joint-venture with my adviser Prof. Dr. Muhittin Gökmen. I am thankful to him for his continuous assistance on preparing this project. Special thanks to the assistants of the Computer Vision Laboratory for their steady support and help in many topics related with the project

    Illumination Processing in Face Recognition

    Get PDF

    Robust face recognition by an albedo based 3D morphable model

    Get PDF
    Large pose and illumination variations are very challenging for face recognition. The 3D Morphable Model (3DMM) approach is one of the effective methods for pose and illumination invariant face recognition. However, it is very difficult for the 3DMM to recover the illumination of the 2D input image because the ratio of the albedo and illumination contributions in a pixel intensity is ambiguous. Unlike the traditional idea of separating the albedo and illumination contributions using a 3DMM, we propose a novel Albedo Based 3D Morphable Model (AB3DMM), which removes the illumination component from the images using illumination normalisation in a preprocessing step. A comparative study of different illumination normalisation methods for this step is conducted on PIE and Multi-PIE databases. The results show that overall performance of our method outperforms state-of-the-art methods

    Hybrid Approach for Face Recognition Using DWT and LBP

    Get PDF
    Authentication of individuals plays a vital role to check intrusions in any online digital system. Most commonly and securely used techniques are biometric fingerprint reader and face recognition. Face recognition is the process of identification of individuals by their facial images, as faces are rarely matched. Face recognition technique merely considering test images and compare this with number of trained images stored in database and then conclude whether the test images matches with any trained images. In this paper we have discussed two hybrid techniques local binary pattern (LBP) and Discrete Wavelet Transform (DWT) for face images to extract feature stored in database by applying principal component analysis for fusion and same process is done for test images. Then K-nearest neighbor (KNN) classifier is used to classify images and measure the accuracy. Our proposed model achieved 95% accuracy. The aim of this paper is to develop a robust method for face recognition and classification of individuals to improve the recognition rate, efficiency of the system and for lesser complexity

    Illumination transfer using homomorphic wavelet filtering and its application to light-insensitive face recognition

    Full text link

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    Human face recognition under degraded conditions

    Get PDF
    Comparative studies on the state of the art feature extraction and classification techniques for human face recognition under low resolution problem, are proposed in this work. Also, the effect of applying resolution enhancement, using interpolation techniques, is evaluated. A gradient-based illumination insensitive preprocessing technique is proposed using the ratio between the gradient magnitude and the current intensity level of image which is insensitive against severe level of lighting effect. Also, a combination of multi-scale Weber analysis and enhanced DD-DT-CWT is demonstrated to have a noticeable stability versus illumination variation. Moreover, utilization of the illumination insensitive image descriptors on the preprocessed image leads to further robustness against lighting effect. The proposed block-based face analysis decreases the effect of occlusion by devoting different weights to the image subblocks, according to their discrimination power, in the score or decision level fusion. In addition, a hierarchical structure of global and block-based techniques is proposed to improve the recognition accuracy when different image degraded conditions occur. Complementary performance of global and local techniques leads to considerable improvement in the face recognition accuracy. Effectiveness of the proposed algorithms are evaluated on Extended Yale B, AR, CMU Multi-PIE, LFW, FERET and FRGC databases with large number of images under different degradation conditions. The experimental results show an improved performance under poor illumination, facial expression and, occluded images
    corecore