462 research outputs found

    Charge Collection Physical Modeling for Soft Error Rate Computational Simulation in Digital Circuits

    Get PDF
    This chapter describes a new computational approach for accurately modeling radiation-induced single-event transient current and charge collection at circuit level. This approach, called random-walk drift-diffusion (RWDD), is a fast Monte Carlo particle method based on a random-walk process that takes into account both diffusion and drift of carriers in a non-constant electric field both in space and time. After introducing the physical insights of the RWDD model, the chapter details the practical implementation of the method using an object-oriented programming language and its parallelization on graphical processing units. Besides, the capability of the approach to treat multiple node charge collection is presented. The chapter also details the coupling of the model either with an internal routine or with SPICE for circuit solving. Finally, the proposed approach is illustrated at device and circuit level, considering four different test vehicles in 65 nm technologies: a stand-alone transistor, a CMOS inverter, a SRAM cell and a flip-flop circuit. RWDD results are compared with data obtained from a full three-dimensional (3D) numerical approach (TCAD simulations) at transistor level. The importance of the circuit feedback on the charge-collection process is also demonstrated for devices connected to other circuit nodes

    No temperature fluctuations in the giant HII region H 1013

    Get PDF
    While collisionally excited lines in HII regions allow one to easily probe the chemical composition of the interstellar medium in galaxies, the possible presence of important temperature fluctuations casts some doubt on the derived abundances. To provide new insights into this question, we have carried out a detailed study of a giant HII region, H 1013, located in the galaxy M101, for which many observational data exist and which has been claimed to harbour temperature fluctuations at a level of t^2 = 0.03-0.06. We have first complemented the already available optical observational datasets with a mid-infrared spectrum obtained with the Spitzer Space Telescope. Combined with optical data, this spectrum provides unprecedented information on the temperature structure of this giant HII region. A preliminary analysis based on empirical temperature diagnostics suggests that temperature fluctuations should be quite weak. We have then performed a detailed modelling using the pyCloudy package based on the photoionization code Cloudy. We have been able to produce photoionization models constrained by the observed Hb surface brightness distribution and by the known properties of the ionizing stellar population than can account for most of the line ratios within their uncertainties. Since the observational constraints are both strong and numerous, this argues against the presence of significant temperature fluctuations in H 1013. The oxygen abundance of our best model is 12 + log O/H = 8.57, as opposed to the values of 8.73 and 8.93 advocated by Esteban et al. (2009) and Bresolin (2007), respectively, based on the significant temperature fluctuations they derived. However, our model is not able to reproduce the intensities of the oxygen recombination lines . This cannot be attributed to observational uncertainties and requires an explanation other than temperature fluctuations.Comment: accepted in Astronomy & Astrophysic

    Physic-topological (electrical) model of a junction field effect transistor, taking into account the degradation of operational characteristics under the influence of penetrating radiation

    Get PDF
    The results of applying the compact model of junction field effect transistors developed and integrated into the Cadence software product for control to evaluate the hardness of a two-stage differential amplifier circuit under the combined or separate exposure to fluences of electrons, protons and neutrons are presented

    A Monte Carlo simulation of the Sudbury Neutrino Observatory proportional counters

    Get PDF
    The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of 3He proportional counters to the detector. The purpose of this Neutral Current Detection (NCD) array was to observe neutrons resulting from neutral-current solar neutrino-deuteron interactions. We have developed a detailed simulation of the current pulses from the NCD array proportional counters, from the primary neutron capture on 3He through the NCD array signal-processing electronics. This NCD array Monte Carlo simulation was used to model the alpha-decay background in SNO's third-phase 8B solar-neutrino measurement.Comment: 38 pages; submitted to the New Journal of Physic

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification
    corecore