40 research outputs found

    A 2-D-Material FET Verilog-A Model for Analog Neuromorphic Circuit Design

    Get PDF
    This work was supported in part by the European Project through European Research Council (ERC) Printable Electronic on Paper Through 2D Material based Inks (PEP2D) under Grant 770047, in part by Origami Electronics for three-dimensional integration of computational devices (ORIGENAL) under Grant 828901, and in part by Quantum Engineering for Machine Learning (QUEFORMAL) under Grant 829035. The work of Enrique G. Marin was supported in part by MCIN/AEI/10.13039/501100011033 under Project PID2020-116518GB-I00 and in part by FEDER/Junta de Andalucia under Project A-TIC-646-UGR20.We present a charge-based Verilog-A model for 2-D-material (2DM)-based field-effect transistors (FETs) with application in neuromorphic circuit design. The model combines the explicit solution of the drift-diffusion transport and electrostatics, including Fermi-Dirac statistics. The Ward-Dutton linear charge partitioning scheme is then employed for terminal charges and capacitance calculations. The model accurately predicts the electrical behavior of experimental MoS2 FETs, and it is applied to simulate neuromorphic-circuit building blocks, including a floating-gate (FG) current-mirror (CM) vector-matrix multi-plier (VMM), extracting the effective number of bits under different operation conditions.European Project through European Research Council (ERC) Printable Electronic on Paper Through 2D Material based Inks (PEP2D) 770047Origami Electronics for three-dimensional integration of computational devices (ORIGENAL) 828901Quantum Engineering for Machine Learning (QUEFORMAL) 829035MCIN/AEI PID2020-116518GB-I00FEDER/Junta de Andalucia A-TIC-646-UGR2

    Compact Modeling of Intrinsic Capacitances in Double-Gate Tunnel-FETs

    Get PDF
    La miniaturització dels MOSFET en els circuits integrats ha elevat la tecnologia microelectrònica. Aquesta tendència també augmenta el grau de complexitat d'aquests circuits i els seus components bàsics. En els MOSFET convencionals, el corrent es basa en l'emissió termoiònica de portadors de càrrega, que per això limita el pendent subumbral en aquests transistors a 60 mV / dec. Per tant, per superar aquest límit i continuar amb la miniaturització per mantenir el ritme de la llei de Moore, es requereixen estructures alternatives. Entre aquestes, el transistor d'efecte de camp per túnel (TFET) es considera un possible successor de l'MOSFET. A causa del seu mecanisme alternatiu de transport de corrent, conegut com a túnel de banda a banda (B2B), el pendent subumbral en TFET pot fer-se inferior al límit de 60 mV / dec. Per comprendre i estimar el comportament dels TFET, no només com un element únic sinó també a nivell de circuit, es requereix un model compacte d'aquest dispositiu. En aquesta tesi es presenta un model basat en càrrega per descriure el comportament capacitiu d'un TFET de doble porta (DG TFET). No obstant això, la simplicitat i la flexibilitat de el model permeten usar-lo per a un altre tipus d'estructures TFET, com els TFET planars o de nanofils d'una sola porta (SG TFETs). El model és verificat amb les simulacions TCAD, així com amb mesures experimentals de TFET fabricats. El model de capacitància també inclou l'efecte dels elements paràsits. A més, en el context d'aquest treball també s'investiga la influència dels contactes de barrera Schottky en el comportament capacitiu dels TFET. Aquest model finalment es combina amb un model DC compacte existent per formar un model TFET compacte complet. A continuació, el model compacte s'implementa per a simulacions transitòries de circuits oscil·ladors d'anell basats en TFET.La miniaturización de los MOSFET en los circuitos integrados ha elevado la tecnología microelectrónica. Esta tendencia también aumenta el grado de complejidad de estos circuitos y sus componentes básicos. En los MOSFET convencionales, la corriente se basa en la emisión termoiónica de portadores de carga, que por ello limita la pendiente subumbral en estos transistores a 60 mV/dec. Por tanto, para superar este límite y continuar con la miniaturización para mantener el ritmo de la ley de Moore, se requieren estructuras alternativas. Entre estas, el transistor de efecto de campo por túnel (TFET) se considera un posible sucesor del MOSFET. Debido a su mecanismo alternativo de transporte de corriente, conocido como túnel de banda a banda (B2B), la pendiente subumbral en TFET puede hacerse inferior al límite de 60 mV/dec. Para comprender y estimar el comportamiento de los TFET, no sólo como un elemento único sino también a nivel de circuito, se requiere un modelo compacto de este dispositivo. En esta tesis se presenta un modelo basado en carga para describir el comportamiento capacitivo de un TFET de doble puerta (DG TFET). Sin embargo, la simplicidad y la flexibilidad del modelo permiten usarlo para otro tipo de estructuras TFET, como los TFET planares o de nanohílos de una sola puerta (SG TFETs). El modelo es verificado con las simulaciones TCAD, así como con medidas experimentales de TFET fabricados. El modelo de capacitancia también incluye el efecto de los elementos parásitos. Además, en el contexto de este trabajo también se investiga la influencia de los contactos de barrera Schottky en el comportamiento capacitivo de los TFET. Este modelo finalmente se combina con un modelo DC compacto existente para formar un modelo TFET compacto completo. A continuación, el modelo compacto se implementa para simulaciones transitorias de circuitos osciladores de anillo basados en TFET.Miniaturization of the MOSFETs on the integrated circuits has elevated the microelectronic technology. This trend also increases the degree of complexity of these circuits and their building blocks. In conventional MOSFETs the current is based on the thermionic—emission of charge carrier, which therefore limits the subthreshold swing in these transistors to 60 mV/dec. Hence, to overcome this limit and continue with down scaling to keep pace with the Moor’s law, alternative structures are required. Among these, the tunnel—field—effect transistor (TFET) is considered as a potential successor of the MOSFET. Due to its alternative current transport mechanism, known as band—to—band (B2B) tunneling, the subthreshold swing in TFETs can overcome the 60 mV/dec limit. In order to comprehend and estimate the behavior of TFETs, not only as a single element but also on the circuit level, a compact model of this device is required. In this dissertation a charge –based model to describes the capacitive behavior of a double—gate (DG) TFET is presented. However, simplicity and flexibility of the model allow to use it for other type of TFET structures such as single—gate (SG) planar or nanowire TFETs. The model is verified with the TCAD simulations as well as the measurement data of fabricated TFETs. The capacitance model also includes the effect of the parasitic elements. Furthermore, in the context of this work also the influence of Schottky barrier contacts on the capacitive behavior of TFETs is investigated. This model is finally combined with an existing compact DC model to form a complete compact TFET model. The compact model is then implemented for transient simulations of TFET—based inverter and ring—oscillator circuits

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields

    Theory, Modelling and Implementation of Graphene Field-Effect Transistor

    Get PDF
    PhDTwo-dimensional materials with atomic thickness have attracted a lot of attention from researchers worldwide due to their excellent electronic and optical properties. As the silicon technology is approaching its limit, graphene with ultrahigh carrier mobility and ultralow resistivity shows the potential as channel material for novel high speed transistor beyond silicon. This thesis summarises my Ph.D. work including the theory and modelling of graphene field-effect transistors (GFETs) as well as their potential RF applications. The introduction and review of existing graphene transistors are presented. Multiscale modelling approaches for graphene devices are also introduced. A novel analytical GFET model based on the drift-diffusion transport theory is then developed for RF/microwave circuit analysis. Since the electrons and holes have different mobility variations against the channel potential in graphene, the ambipolar GFET cannot be modelled with constant carrier mobility. A new carrier mobility function, which enables the accurate modelling of the ambipolar property of GFET, is hence developed for this purpose. The new model takes into account the carrier mobility variation against the bias voltage as well as the mobility difference between electrons and holes. It is proved to be more accurate for the DC current calculation. The model has been written in Verilog-A language and can be import into commercial software such as Keysight ADS for circuit simulation. In addition, based on the proposed model two GFET non-Foster circuits (NFCs) are conducted. As a negative impedance element, NFCs find their applications in impedance matching of electrically small antennas and bandwidth improvement of metasurfaces. One of the NFCs studied in this thesis is based on the Linvill's technique in which a pair of identical GFETs is used while the other circuit utilises the negative resistance of a single GFET. The stability analysis of NFCs is also presented. Finally, a high impedance surface loaded with proposed NFCs is also studied, demonstrating significant bandwidth enhancement.Engineering and Physical Sciences Research Council (EPSRC) Grant on `Graphene Flexible Electronics and Optoelectronics' (EP/K01711X/1), the EU Graphene Flagship (FP7-ICT-604391) and Graphene Core 1 (H2020 696656

    A Novel Approach for Doped Organic Transistors and Heterostructure Devices

    Get PDF
    Organic and molecular electronics is a promising field for many applications, particularly flexible electronics, since it allows for the processing of electronic circuits at low temperatures on a variety of different substrates, including flexible sheets. Despite continuous improvements in the charge carrier mobility of both n- and p-type thin-film transistors, the performance of these devices is not yet attractive for commercial applications. A substantial hurdle to the realization of effective organic-based digital circuits is the lack of scalable, reproducible high-charge carrier-mobility organic semiconductors with a low contact resistance and controllable threshold voltage in transistors. The threshold voltage control is required to optimize the performance of digital circuits. Previous approaches used doping or self-assembled monolayers to provide threshold voltage control in organic field-effect transistors (OFETs). However, neither of these methods offers a proper fine-tuning of the threshold voltage or a substantial on/off ratio. Both of these problems have been successfully solved in inorganic electronics by using the concept of remote doping. This doping results in a so-called modulation-doped field-effect transistor (MODFET). Thus, in the first part of this work, we present the concept of remote doping for controlling and fine-tuning the threshold voltage without compromising charge carrier mobility by using a hole-type conduction architecture at the junction between two organic semiconductors. The second part of this work is dedicated to developing, fabricating, and characterizing high-mobility single and polycrystalline rubrene OFETs by using scalable growth methods. Finally, in the last part, we apply the knowledge gained from the first two parts and design digital circuits of rubrene OFETs aiming for high-frequency applications

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore