15 research outputs found

    Enabling the use of embedded and mobile technologies for high-performance computing

    Get PDF
    In the late 1990s, powerful economic forces led to the adoption of commodity desktop processors in High-Performance Computing(HPC). This transformation has been so effective that the November 2016 TOP500 list is still dominated by x86 architecture. In 2016, the largest commodity market in computing is not PCs or servers, but mobile computing, comprising smartphones andtablets, most of which are built with ARM-based Systems on Chips (SoC). This suggests that once mobile SoCs deliver sufficient performance, mobile SoCs can help reduce the cost of HPC. This thesis addresses this question in detail.We analyze the trend in mobile SoC performance, comparing it with the similar trend in the 1990s. Through development of real system prototypes and their performance analysis we assess the feasibility of building an HPCsystem based on mobile SoCs. Through simulation of the future mobile SoC, we identify the missing features and suggest improvements that would enable theuse of future mobile SoCs in HPC environment. Thus, we present design guidelines for future generations mobile SoCs, and HPC systems built around them, enabling the newclass of cheap supercomputers.A finales de la década de los 90, razones económicas llevaron a la adopción de procesadores de uso general en sistemas de Computación de Altas Prestaciones (HPC). Esta transformación ha sido tan efectiva que la lista TOP500 de noviembre de 2016 sigue aun dominada por la arquitectura x86. En 2016, el mayor mercado de productos básicos en computación no son los ordenadores de sobremesa o los servidores, sino la computación móvil, que incluye teléfonos inteligentes y tabletas, la mayoría de los cuales están construidos con sistemas en chip(SoC) de arquitectura ARM. Esto sugiere que una vez que los SoC móviles ofrezcan un rendimiento suficiente, podrán utilizarse para reducir el costo desistemas HPC. Esta tesis aborda esta cuestión en detalle. Analizamos la tendencia del rendimiento de los SoC para móvil, comparándola con la tendencia similar ocurrida en los añosnoventa. A través del desarrollo de prototipos de sistemas reales y su análisis de rendimiento, evaluamos la factibilidad de construir unsistema HPC basado en SoCs móviles. A través de la simulación de SoCs móviles futuros, identificamos las características que faltan y sugerimos mejoras quepermitirían su uso en entornos HPC. Por lo tanto, presentamos directrices de diseño para futuras generaciones de SoCs móviles y sistemas HPC construidos a sualrededor, para permitir la construcción de una nueva clase de supercomputadores de coste reducido

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Vectorization system for unstructured codes with a Data-parallel Compiler IR

    Get PDF
    With Dennard Scaling coming to an end, Single Instruction Multiple Data (SIMD) offers itself as a way to improve the compute throughput of CPUs. One fundamental technique in SIMD code generators is the vectorization of data-parallel code regions. This has applications in outer-loop vectorization, whole-function vectorization and vectorization of explicitly data-parallel languages. This thesis makes contributions to the reliable vectorization of data-parallel code regions with unstructured, reducible control flow. Reducibility is the case in practice where all control-flow loops have exactly one entry point. We present P-LLVM, a novel, full-featured, intermediate representation for vectorizers that provides a semantics for the code region at every stage of the vectorization pipeline. Partial control-flow linearization is a novel partial if-conversion scheme, an essential technique to vectorize divergent control flow. Different to prior techniques, partial linearization has linear running time, does not insert additional branches or blocks and gives proved guarantees on the control flow retained. Divergence of control induces value divergence at join points in the control-flow graph (CFG). We present a novel control-divergence analysis for directed acyclic graphs with optimal running time and prove that it is correct and precise under common static assumptions. We extend this technique to obtain a quadratic-time, control-divergence analysis for arbitrary reducible CFGs. For this analysis, we show on a range of realistic examples how earlier approaches are either less precise or incorrect. We present a feature-complete divergence analysis for P-LLVM programs. The analysis is the first to analyze stack-allocated objects in an unstructured control setting. Finally, we generalize single-dimensional vectorization of outer loops to multi-dimensional tensorization of loop nests. SIMD targets benefit from tensorization through more opportunities for re-use of loaded values and more efficient memory access behavior. The techniques were implemented in the Region Vectorizer (RV) for vectorization and TensorRV for loop-nest tensorization. Our evaluation validates that the general-purpose RV vectorization system matches the performance of more specialized approaches. RV performs on par with the ISPC compiler, which only supports its structured domain-specific language, on a range of tree traversal codes with complex control flow. RV is able to outperform the loop vectorizers of state-of-the-art compilers, as we show for the SPEC2017 nab_s benchmark and the XSBench proxy application.Mit dem Ausreizen des Dennard Scalings erreichen die gewohnten Zuwächse in der skalaren Rechenleistung zusehends ihr Ende. Moderne Prozessoren setzen verstärkt auf parallele Berechnung, um den Rechendurchsatz zu erhöhen. Hierbei spielen SIMD Instruktionen (Single Instruction Multiple Data), die eine Operation gleichzeitig auf mehrere Eingaben anwenden, eine zentrale Rolle. Eine fundamentale Technik, um SIMD Programmcode zu erzeugen, ist der Einsatz datenparalleler Vektorisierung. Diese unterliegt populären Verfahren, wie der Vektorisierung äußerer Schleifen, der Vektorisierung gesamter Funktionen bis hin zu explizit datenparallelen Programmiersprachen. Der Beitrag der vorliegenden Arbeit besteht darin, ein zuverlässiges Vektorisierungssystem für datenparallelen Code mit reduziblem Steuerfluss zu entwickeln. Diese Anforderung ist für alle Steuerflussgraphen erfüllt, deren Schleifen nur einen Eingang haben, was in der Praxis der Fall ist. Wir präsentieren P-LLVM, eine ausdrucksstarke Zwischendarstellung für Vektorisierer, welche dem Programm in jedem Stadium der Transformation von datenparallelem Code zu SIMD Code eine definierte Semantik verleiht. Partielle Steuerfluss-Linearisierung ist ein neuer Algorithmus zur If-Conversion, welcher Sprünge erhalten kann. Anders als existierende Verfahren hat Partielle Linearisierung eine lineare Laufzeit und fügt keine neuen Sprünge oder Blöcke ein. Wir zeigen Kriterien, unter denen der Algorithmus Steuerfluss erhält, und beweisen diese. Steuerflussdivergenz induziert Divergenz an Punkten zusammenfließenden Steuerflusses. Wir stellen eine neue Steuerflussdivergenzanalyse für azyklische Graphen mit optimaler Laufzeit vor und beweisen deren Korrektheit und Präzision. Wir verallgemeinern die Technik zu einem Algorithmus mit quadratischer Laufzeit für beliebiege, reduzible Steuerflussgraphen. Eine Studie auf realistischen Beispielgraphen zeigt, dass vergleichbare Techniken entweder weniger präsize sind oder falsche Ergebnisse liefern. Ebenfalls präsentieren wir eine Divergenzanalyse für P-LLVM Programme. Diese Analyse ist die erste Divergenzanalyse, welche Divergenz in stapelallokierten Objekten unter unstrukturiertem Steuerfluss analysiert. Schließlich generalisieren wir die eindimensionale Vektorisierung von äußeren Schleifen zur multidimensionalen Tensorisierung von Schleifennestern. Tensorisierung eröffnet für SIMD Prozessoren mehr Möglichkeiten, bereits geladene Werte wiederzuverwenden und das Speicherzugriffsverhalten des Programms zu optimieren, als dies mit Vektorisierung der Fall ist. Die vorgestellten Techniken wurden in den Region Vectorizer (RV) für Vektorisierung und TensorRV für die Tensorisierung von Schleifennestern implementiert. Wir zeigen auf einer Reihe von steuerflusslastigen Programmen für die Traversierung von Baumdatenstrukturen, dass RV das gleiche Niveau erreicht wie der ISPC Compiler, welcher nur seine strukturierte Eingabesprache verarbeiten kann. RV kann schnellere SIMD-Programme erzeugen als die Schleifenvektorisierer in aktuellen Industriecompilern. Dies demonstrieren wir mit dem nab_s benchmark aus der SPEC2017 Benchmarksuite und der XSBench Proxy-Anwendung

    Ein verteilter und agentenbasierter Ansatz für gekoppelte Probleme der rechnergestützten Ingenieurwissenschaften

    Get PDF
    Challenging questions in science and engineering often require to decouple a complex problem and to focus on isolated sub-problems first. The knowledge of those individual solutions can later be combined to obtain the result for the full question. A similar technique is applied in numerical modeling. Here, the software solver for subsets of the coupled problem might already exist and can directly be used. This thesis describes a software environment capable of combining multiple software solvers, the result being a new, combined model. Two important design decisions were crucial at the beginning: First, every sub-model keeps full control of its execution. Second, the source code of the sub-model requires only minimal adaptation. The sub-models choose themselves when to issue communication calls, with no outer synchronisation mechanism required. The coupling of heterogeneous hardware is supported as well as the use of homogeneous compute clusters. Furthermore, the coupling framework allows sub-solvers to be written in different programming languages. Also, each of the sub-models may operate on its own spatial and temporal scales. The next challenge was to allow the potential coupling of thousands software agents, being able to utilise today's petascale hardware. For this purpose, a specific coupling framework was designed and implemented, combining the experiences from the previous work with additions required to cope with the targeted number of coupled sub-models. The large number of interacting models required a much more dynamic approach, where the agents automatically detect their communication partners at runtime. This eliminates the need to explicitly specify the coupling graph a~priori. Agents are allowed to enter (and leave) the simulation at any time, with the coupling graph changing accordingly.Da viele Problemstellungen im Ingenieurwesen sehr komplex sind, ist es oft sinnvoll, sie in einzelne Teilprobleme aufzugliedern. Diese Teilbereiche können nun einzeln angegangen und dann zur Gesamtlösung kombiniert werden. Ein ähnlicher Ansatz wird bei der numerischen Modellierung verfolgt: Komplexe Software wird schrittweise erstellt, indem Software-Löser für einzelne Bereiche zuerst separat erarbeitet werden. In dieser Arbeit wird eine Software beschrieben, die eine Vielzahl von unabhängigen Software-Lösern kombinieren kann. Jedes Teilmodell verhält sich weiterhin wie ein selbständiges Programm. Hierfür wird es in einen Software-Agenten gehüllt. Zur Kopplung sind lediglich minimale Ergänzungen am Quellcode des Teilmodells nötig. Möglich wird dies durch die Struktur der Kommunikation zwischen den Teilmodellen. Sie lässt den Modellen die Kontrolle über die Kommunikationsaufrufe und benötigt zur Synchronisation keine Einflussnahme einer übergeordneten Instanz. Manche Teilmodelle sind für den Gebrauch mit einer speziellen Hardware optimiert. Daher musste das Zusammenspiel unterschiedlicher Hardware ebenso berücksichtigt werden wie homogene Rechencluster. Weiterhin ermöglicht das Kopplungs-Framework, dass unterschiedliche Programmiersprachen verbunden werden können. Wie schon der Programmablauf, so können auch die Modellparameter, etwa die räumliche und zeitliche Skala, von Teilmodell zu Teilmodell unterschiedlich bleiben. Weiter behandelt diese Arbeit eine Vorgehensweise um tausende von Software-Agenten zu einem Groß-Modell zu koppeln. Dies ist erforderlich, wenn die Ressourcen heutiger Petascale Rechencluster benutzt werden sollen. Hierzu wurde das bisherige Framework neu aufgelegt, da die große Anzahl von zu koppelnden Modellen einer wesentlich dynamischeren Kommunikationsstruktur bedarf. Die Agenten der Teilmodelle können einer laufenden Simulation hinzugefügt werden (oder diese verlassen) und die globalen Kopplungsbeziehungen passen sich dementsprechend an

    Design and Evaluation of Low-Latency Communication Middleware on High Performance Computing Systems

    Get PDF
    [Resumen]El interés en Java para computación paralela está motivado por sus interesantes características, tales como su soporte multithread, portabilidad, facilidad de aprendizaje,alta productividad y el aumento significativo en su rendimiento omputacional. No obstante, las aplicaciones paralelas en Java carecen generalmente de mecanismos de comunicación eficientes, los cuales utilizan a menudo protocolos basados en sockets incapaces de obtener el máximo provecho de las redes de baja latencia, obstaculizando la adopción de Java en computación de altas prestaciones (High Per- formance Computing, HPC). Esta Tesis Doctoral presenta el diseño, implementación y evaluación de soluciones de comunicación en Java que superan esta limitación. En consecuencia, se desarrollaron múltiples dispositivos de comunicación a bajo nivel para paso de mensajes en Java (Message-Passing in Java, MPJ) que aprovechan al máximo el hardware de red subyacente mediante operaciones de acceso directo a memoria remota que proporcionan comunicaciones de baja latencia. También se incluye una biblioteca de paso de mensajes en Java totalmente funcional, FastMPJ, en la cual se integraron los dispositivos de comunicación. La evaluación experimental ha mostrado que las primitivas de comunicación de FastMPJ son competitivas en comparación con bibliotecas nativas, aumentando significativamente la escalabilidad de aplicaciones MPJ. Por otro lado, esta Tesis analiza el potencial de la computación en la nube (cloud computing) para HPC, donde el modelo de distribución de infraestructura como servicio (Infrastructure as a Service, IaaS) emerge como una alternativa viable a los sistemas HPC tradicionales. La evaluación del rendimiento de recursos cloud específicos para HPC del proveedor líder, Amazon EC2, ha puesto de manifiesto el impacto significativo que la virtualización impone en la red, impidiendo mover las aplicaciones intensivas en comunicaciones a la nube. La clave reside en un soporte de virtualización apropiado, como el acceso directo al hardware de red, junto con las directrices para la optimización del rendimiento sugeridas en esta Tesis.[Resumo]O interese en Java para computación paralela está motivado polas súas interesantes características, tales como o seu apoio multithread, portabilidade, facilidade de aprendizaxe, alta produtividade e o aumento signi cativo no seu rendemento computacional. No entanto, as aplicacións paralelas en Java carecen xeralmente de mecanismos de comunicación e cientes, os cales adoitan usar protocolos baseados en sockets que son incapaces de obter o máximo proveito das redes de baixa latencia, obstaculizando a adopción de Java na computación de altas prestacións (High Performance Computing, HPC). Esta Tese de Doutoramento presenta o deseño, implementaci ón e avaliación de solucións de comunicación en Java que superan esta limitación. En consecuencia, desenvolvéronse múltiples dispositivos de comunicación a baixo nivel para paso de mensaxes en Java (Message-Passing in Java, MPJ) que aproveitan ao máaximo o hardware de rede subxacente mediante operacións de acceso directo a memoria remota que proporcionan comunicacións de baixa latencia. Tamén se inclúe unha biblioteca de paso de mensaxes en Java totalmente funcional, FastMPJ, na cal foron integrados os dispositivos de comunicación. A avaliación experimental amosou que as primitivas de comunicación de FastMPJ son competitivas en comparación con bibliotecas nativas, aumentando signi cativamente a escalabilidade de aplicacións MPJ. Por outra banda, esta Tese analiza o potencial da computación na nube (cloud computing) para HPC, onde o modelo de distribución de infraestrutura como servizo (Infrastructure as a Service, IaaS) xorde como unha alternativa viable aos sistemas HPC tradicionais. A ampla avaliación do rendemento de recursos cloud específi cos para HPC do proveedor líder, Amazon EC2, puxo de manifesto o impacto signi ficativo que a virtualización impón na rede, impedindo mover as aplicacións intensivas en comunicacións á nube. A clave atópase no soporte de virtualización apropiado, como o acceso directo ao hardware de rede, xunto coas directrices para a optimización do rendemento suxeridas nesta Tese.[Abstract]The use of Java for parallel computing is becoming more promising owing to its appealing features, particularly its multithreading support, portability, easy-tolearn properties, high programming productivity and the noticeable improvement in its computational performance. However, parallel Java applications generally su er from inefficient communication middleware, most of which use socket-based protocols that are unable to take full advantage of high-speed networks, hindering the adoption of Java in the High Performance Computing (HPC) area. This PhD Thesis presents the design, development and evaluation of scalable Java communication solutions that overcome these constraints. Hence, we have implemented several lowlevel message-passing devices that fully exploit the underlying network hardware while taking advantage of Remote Direct Memory Access (RDMA) operations to provide low-latency communications. Moreover, we have developed a productionquality Java message-passing middleware, FastMPJ, in which the devices have been integrated seamlessly, thus allowing the productive development of Message-Passing in Java (MPJ) applications. The performance evaluation has shown that FastMPJ communication primitives are competitive with native message-passing libraries, improving signi cantly the scalability of MPJ applications. Furthermore, this Thesis has analyzed the potential of cloud computing towards spreading the outreach of HPC, where Infrastructure as a Service (IaaS) o erings have emerged as a feasible alternative to traditional HPC systems. Several cloud resources from the leading IaaS provider, Amazon EC2, which speci cally target HPC workloads, have been thoroughly assessed. The experimental results have shown the signi cant impact that virtualized environments still have on network performance, which hampers porting communication-intensive codes to the cloud. The key is the availability of the proper virtualization support, such as the direct access to the network hardware, along with the guidelines for performance optimization suggested in this Thesis

    Improving Compute & Data Efficiency of Flexible Architectures

    Get PDF

    Reducing exception management overhead with software restart markers

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 181-196).Modern processors rely on exception handling mechanisms to detect errors and to implement various features such as virtual memory. However, these mechanisms are typically hardware-intensive because of the need to buffer partially-completed instructions to implement precise exceptions and enforce in-order instruction commit, often leading to issues with performance and energy efficiency. The situation is exacerbated in highly parallel machines with large quantities of programmer-visible state, such as VLIW or vector processors. As architects increasingly rely on parallel architectures to achieve higher performance, the problem of exception handling is becoming critical. In this thesis, I present software restart markers as the foundation of an exception handling mechanism for explicitly parallel architectures. With this model, the compiler is responsible for delimiting regions of idempotent code. If an exception occurs, the operating system will resume execution from the beginning of the region. One advantage of this approach is that instruction results can be committed to architectural state in any order within a region, eliminating the need to buffer those values. Enabling out-of-order commit can substantially reduce the exception management overhead found in precise exception implementations, and enable the use of new architectural features that might be prohibitively costly with conventional precise exception implementations. Additionally, software restart markers can be used to reduce context switch overhead in a multiprogrammed environment. This thesis demonstrates the applicability of software restart markers to vector, VLIW, and multithreaded architectures. It also contains an implementation of this exception handling approach that uses the Trimaran compiler infrastructure to target the Scale vectorthread architecture. I show that using software restart markers incurs very little performance overhead for vector-style execution on Scale.(cont.) Finally, I describe the Scale compiler flow developed as part of this work and discuss how it targets certain features facilitated by the use of software restart markersby Mark Jerome Hampton.Ph.D

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore