834 research outputs found

    Extended Partial-Wave Analysis of piN Scattering Data

    Full text link
    We present results from a comprehensive partial-wave analysis of pi+-p elastic scattering and charge-exchange data, covering the region from threshold to 2.6 GeV in the lab pion kinetic energy, employing a coupled-channel formalism to simultaneously fit pi-p-->eta n data to 0.8 GeV. Our main result, solution SP06, utilizes a complete set of forward and fixed-t dispersion relation constraints applied to the piN elastic amplitude. The results of these analyses are compared with previous solutions in terms of their resonance spectra and preferred values for couplings and low-energy parameters.Comment: 21 pages, 11 figure

    Partial-Wave Analysis of Single-Pion Production Reactions

    Full text link
    We present an overview of our efforts to analyze pion-nucleon elastic scattering data, along with data from related photo- and electroproduction reactions, in order to study the baryon spectrum. We then focus on the Delta(1232) resonance. Fits to pion photo- and electroproduction data have been used to extract values for the R_EM = E2/M1 and R_SM = S2/M1 ratios as functions of Q^2. These results are compared to other recent determinations.Comment: 7 pages, 9 figures, the Shape of Hadrons Workshop Proceedings (27-29 April, 2006 Athens, Greece

    Properties of recent IBAD-MOCVD Coated Conductors relevant to their high field, low temperature magnet use

    Full text link
    BaZrO3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (Ic) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density Jc(theta) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane Jc(theta) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design - the OADI (Off-Axis Double Ic), which clearly shows that BZO broadens the ab-plane peak and thus raises Jc 5-30{\deg} away from the tape plane, where the most critical approach to Ic occurs in many coil designs. We describe some experimental procedures that may make critical current Ic tests of these very high current tapes more tractable at 4.2 K, where Ic exceeds 1000 A even for 4 mm wide tape with only 1 micron thickness of superconductor. A positive conclusion is that BZO is very beneficial for the Jc characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious

    Results from the Analysis of Crystal Ball Meson Production Measurements at BNL

    Get PDF
    The Crystal Ball spectrometer, with its nearly complete angular coverage, is an efficient detector of photon and neutron final states. While installed in the C6 beamline of the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL), this feature was used in a series of precise measurements of reactions with all-neutral final states. Here we concentrate on the analysis of data from the pion-induced reactions: pi- p --> gamma n, pi- p --> pi0 n, pi- p --> eta n, and pi- p --> pi0 pi0 n.Comment: Conference contribution to MESON 2006 - Krakow, Pola

    Baryon Resonance Analysis from SAID

    Full text link
    We discuss the analysis of data from piN elastic scattering and single pion photo- and electroproduction. The main focus is a study of low-lying non-strange baryon resonances. Here we concentrate on some difficulties associated with resonance identification, in particular the Roper and higher P11 states.Comment: 4 pages, 6 figures; Nstar2009 Conf Proceedings; small revisio

    Radiation from relativistic jets in blazars and the efficient dissipation of their bulk energy via photon breeding

    Full text link
    High-energy photons propagating in the magnetised medium with large velocity gradients can mediate energy and momentum exchange. Conversion of these photons into electron-positron pairs in the field of soft photons with the consequent isotropization and emission of new high-energy photons by Compton scattering can lead to the runaway cascade of the high-energy photons and electron-positron pairs fed by the bulk energy of the flow. This is the essence of the photon breeding mechanism. We study the problem of high-energy emission of relativistic jets in blazars via photon breeding mechanism using 2D ballistic model for the jet with the detailed treatment of particle propagation and interactions. The gamma-ray background of similar energy density as observed at Earth is sufficient to trigger the photon breeding. As a result, a jet can convert up to 80 per cent of its total power into radiation. Photon breeding produces a population of high-energy pairs and predicts the spectra in agreement with observations of blazars (e.g. the blazar sequence). It also decelerates the jet at subparsec scales and induces the transversal gradient of the Lorentz factor which reconcile the discrepancy between the high Doppler factors determined from the spectra of TeV blazars and the low apparent velocities observed at VLBI scales. The broad angular distribution of radiation predicted by the mechanism reconciles the observed statistics and luminosity ratio of FR I and BL Lac objects with the large Lorentz factors of the jets as well as explains the high level of the TeV emission in the radio galaxy M87. (abridged)Comment: 18 pages, 12 figure; replaced with the version accepted to MNRA

    Reforming a large lecture modern physics course for engineering majors using a PER-based design

    Get PDF
    We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared with the same course before implementing these reforms and a corresponding course for physics majors.Comment: To be published in the Proceedings of the Physics Education Research Conference 200

    EC-SNe from super-AGB progenitors: theoretical models vs. observations

    Full text link
    Using a parametric approach, we determine the configuration of super-AGB stars at the explosion as a function of the initial mass and metallicity, in order to verify if the EC-SN scenario involving a super-AGB star is compatible with the observations regarding SN2008ha and SN2008S. The results show that both the SNe can be explained in terms of EC-SNe from super-AGB progenitors having a different configuration at the collapse. The impact of these results on the interpretation of other sub-luminous SNe is also discussed.Comment: Accepted for publication in ApJ
    • …
    corecore