32,743 research outputs found

    On the cooperative relaying strategies for multi-core wireless Network-on-Chip

    Get PDF
    Recently, hybrid wired-wireless Network-on-Chip (WiNoC) has been proposed as a suitable communication fabric to provide scalability and satisfy high performance demands of the exascale era of modern multi/many-core System-on-Chip (SoC) design. A well accepted low-latency wireless communication fabric for WiNoCs is millimeter wave (mm-Wave). However, the wireless channel of mm-Wave is lossy due to free space signal radiation with both dielectric propagation loss (DPL) and molecular absorption attenuation (MAA). This is exacerbated for edge situated cores and in macro-chips embodying thousands of cores. To this end, this paper proposes efficient relaying techniques to improve the signal strength of the wireless channel in the WiNoCs using on-chip networking approaches under the realistic SoC channel conditions. First, we propose a realistic relay communication channel for the WiNoCs to characterise both MAA and DPL which have drastic effect on the performance. We then derive and show that the channel capacity for a single-relay WiNoC employing Amplify-and-Forward (AF) and Decode-and-Forward (DF) relaying protocols increases by up to 20% and 25%, respectively, compared to the conventional direct transmission. The AF protocol outperforms the DF mode for shorter transmissions between the relay and the destination cores, while the reverse is observed in other conditions. A hybrid protocol is then proposed to exploit the performance advantages of both relaying protocols to address the unbalanced distance between the cores, providing the maximal channel capacity close to the cutset bound. Finally, our approach is further validated in multi-relay WiNoCs where the communications of the remote cores is assisted by multiple intermediate cores along with the details of associated realistic channel model in emerging many-core SoCs

    Power Optimization for Network Localization

    Get PDF
    Reliable and accurate localization of mobile objects is essential for many applications in wireless networks. In range-based localization, the position of the object can be inferred using the distance measurements from wireless signals exchanged with active objects or reflected by passive ones. Power allocation for ranging signals is important since it affects not only network lifetime and throughput but also localization accuracy. In this paper, we establish a unifying optimization framework for power allocation in both active and passive localization networks. In particular, we first determine the functional properties of the localization accuracy metric, which enable us to transform the power allocation problems into second-order cone programs (SOCPs). We then propose the robust counterparts of the problems in the presence of parameter uncertainty and develop asymptotically optimal and efficient near-optimal SOCP-based algorithms. Our simulation results validate the efficiency and robustness of the proposed algorithms.Comment: 15 pages, 7 figure

    An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    Get PDF
    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as energy-efficient. To find an energy-efficient solution for the communication network we analyze three wireless applications. Based on their communication requirements we observe that revisiting of the circuit switching techniques is beneficial. In this paper we propose a new energy-efficient reconfigurable circuit-switched Network-on-Chip. By physically separating the concurrent data streams we reduce the overall energy consumption. The circuit-switched router has been synthesized and analyzed for its power consumption in 0.13 ¿m technology. A 5-port circuit-switched router has an area of 0.05 mm2 and runs at 1075 MHz. The proposed architecture consumes 3.5 times less energy compared to its packet-switched equivalen

    Adaptive Wireless Networking

    Get PDF
    This paper presents the Adaptive Wireless Networking (AWGN) project. The project aims to develop methods and technologies that can be used to design efficient adaptable and reconfigurable mobile terminals for future wireless communication systems. An overview of the activities in the project is given. Furthermore our vision on adaptivity in wireless communications and suggestions for future activities are presented
    corecore