4,293 research outputs found

    Optimal Power Allocation for Channel Estimation in MIMO-OFDM System with Per-Subcarrier Transmit Antenna Selection

    Get PDF
    A novel hybrid channel estimator is proposed for multiple-input multiple-output orthogonal frequency- division multiplexing (MIMO-OFDM) system with per-subcarrier transmit antenna selection having optimal power allocation among subcarriers. In practice, antenna selection information is transmitted through a binary symmetric control channel with a crossover probability. Linear minimum mean-square error (LMMSE) technique is optimal technique for channel estimation in MIMO-OFDM system. Though LMMSE estimator performs well at low signal to noise ratio (SNR), in the presence of antenna-to-subcarrier-assignment error (ATSA), it introduces irreducible error at high SNR. We have proved that relaxed MMSE (RMMSE) estimator overcomes the performance degradation at high SNR. The proposed hybrid estimator combines the benefits of LMMSE at low SNR and RMMSE estimator at high SNR. The vector mean square error (MSE) expression is modified as scalar expression so that an optimal power allocation can be performed. The convex optimization problem is formulated and solved to allocate optimal power to subcarriers minimizing the MSE, subject to transmit sum power constraint. Further, an analytical expression for SNR threshold at which the hybrid estimator is to be switched from LMMSE to RMMSE is derived. The simulation results show that the proposed hybrid estimator gives robust performance, irrespective of ATSA error

    Multiuser Switched Diversity Scheduling Schemes

    Full text link
    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions.Comment: Accepted at IEEE Transactions on Communications, to appear 2012, funded by NPRP grant 08-577-2-241 from QNR
    • …
    corecore