27,581 research outputs found

    Effective-SNR estimation for wireless sensor network using Kalman filter

    Get PDF
    In many Wireless Sensor Network (WSN) applications, the availability of a simple yet accurate estimation of the RF channel quality is vital. However, due to measurement noise and fading effects, it is usually estimated through probe or learning based methods, which result in high energy consumption or high overheads. We propose to make use of information redundancy among indicators provided by the IEEE 802.15.4 system to improve the estimation of the link quality. A Kalman filter based solution is used due to its ability to give an accurate estimate of the un-measurable states of a dynamic system subject to observation noise. In this paper we present an empirical study showing that an improved indicator, termed Effective-SNR, can be produced by combining Signal to Noise Ratio (SNR) and Link Quality Indicator (LQI) with minimal additional overhead. The estimation accuracy is further improved through the use of Kalman filtering techniques. Finally, experimental results demonstrate that the proposed algorithm can be implemented on resource constraints devices typical in WSNs

    Channel Dynamics and SNR Tracking in Millimeter Wave Cellular Systems

    Full text link
    The millimeter wave (mmWave) frequencies are likely to play a significant role in fifth-generation (5G) cellular systems. A key challenge in developing systems in these bands is the potential for rapid channel dynamics: since mmWave signals are blocked by many materials, small changes in the position or orientation of the handset relative to objects in the environment can cause large swings in the channel quality. This paper addresses the issue of tracking the signal to noise ratio (SNR), which is an essential procedure for rate prediction, handover and radio link failure detection. A simple method for estimating the SNR from periodic synchronization signals is considered. The method is then evaluated using real experiments in common blockage scenarios combined with outdoor statistical models

    Prediction of performance of the DVB-SH system relying on mutual information

    Get PDF
    DVB-SH (Digital Video Broadcasting-Satellite Handled) is a broadcasting standard dedicated to hybrid broadcasting systems combining a satellite and a terrestrial part. On the satellite part, dedicated interleaving and time slicing mechanisms are proposed to mitigate the effects of Land Mobile Satellite (LMS) channel, based on a convolutional interleaver. Depending on the parameters of this interleaver, this mechanism enables to split in time a codeword on duration from 100 ms to about 30s. This mechanism signi?cantly improves the error recovery performance of the code but in literature, exact evaluation at system level of this improvement is missing. The objective of this paper is to propose a prediction method compatible with fast simulations, to quantitatively evaluate the system performance in terms of Packet Error Rate (PER). The main dif?culty is to evaluate the decoding probability of a codeword submitted to several levels of attenuation. The method we propose consists in using as metric the Mutual Information (MI) between coded bit at the emitter side and the received symbol. It is shown that, by averaging the MI over the codeword and by using the decoding performance function g such that PER=g(MI)determined on the Gaussian channel, we can signi?cantly improve the precision of the prediction compared to the two other methods based on SNR and Bit Error Rate (BER). We evaluated these methods on three arti?cial channels where each codeword is transmitted with three or four different levels of attenuations. The prediction error of the SNR-based (resp. the input BER-based) method varies from 0.5 to 1.7 dB (resp. from 0.7 to 1.2 dB) instead of the MI-based method achieves a precision in the order of 0.1 dB in the three cases. We then evaluate this method on real LMS channels with various DVB-SH interleavers and show that the instantaneous PER can also be predicted with high accuracy

    Satellite system performance assessment for in-flight entertainment and air traffic control

    Get PDF
    Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. However, the development of a dedicated satellite system for ATS (Air Traffic Services) and AOC (Airline Operational Communications) seems to be a long-term perspective. The objective of the presented system design is to provide both passenger application traffic access (Internet, GSM) and a high-reliability channel for aeronautical applications using the same satellite links. Due to the constraints in capacity and radio bandwidth allocation, very high frequencies (above 20 GHz) are considered here. The corresponding design implications for the air interface are taken into account and access performances are derived using a dedicated simulation model. Some preliminary results are shown in this paper to demonstrate the technical feasibility of such system design with increased capacity. More details and the open issues will be studied in the future of this research work

    Usage of link-level performance indicators for HSDPA network-level simulations in E-UMTS

    Get PDF
    The paper describes integration of HSDPA (high-speed downlink packet access) link-level simulation results into network-level simulations for enhanced UMTS. The link-level simulations model all physical layer features depicted in the 3GPP standards. These include: generation of transport blocks; turbo coding; rate matching; spreading; scrambling; modulation. At the receiver side, all complementary blocks are designed, with soft-decision demodulation, and a turbo decoder using the MAP (maximum a posteriori) algorithm with 8 iterations. An analytical formula is defined that fits the CQI (channel quality indicator) dependent BLER (block error rate) versus E/sub b//N/sub 0/ results in an AWGN channel. This formula models the physical layer in the network-level simulator. A further extension for frequency selective fading channels has been defined. The network-level simulator includes propagation models that provide SNR values. Based on these SNR values and the simplified physical layer model, an algorithm selects the CQI, and determines the actual BLER at time of reception. The rounding down and delaying of the CQI reporting, which corresponds to the W-CDMA standard, has a significant impact on throughput and transfer delay of the HS-DSCH. Some compensation can be found in a modified transmission. The integration of the link-level and network-level simulators gives accurate and realistic results that can be used in more studies that focus on network layer aspects of packet based services over HSDP
    • 

    corecore