10,478 research outputs found

    Receiver Algorithm based on Differential Signaling for SIMO Phase Noise Channels with Common and Separate Oscillator Configurations

    Get PDF
    In this paper, a receiver algorithm consisting of differential transmission and a two-stage detection for a single-input multiple-output (SIMO) phase-noise channels is studied. Specifically, the phases of the QAM modulated data symbols are manipulated before transmission in order to make them more immune to the random rotational effects of phase noise. At the receiver, a two-stage detector is implemented, which first detects the amplitude of the transmitted symbols from a nonlinear combination of the received signal amplitudes. Then in the second stage, the detector performs phase detection. The studied signaling method does not require transmission of any known symbols that act as pilots. Furthermore, no phase noise estimator (or a tracker) is needed at the receiver to compensate the effect of phase noise. This considerably reduces the complexity of the receiver structure. Moreover, it is observed that the studied algorithm can be used for the setups where a common local oscillator or separate independent oscillators drive the radio-frequency circuitries connected to each antenna. Due to the differential encoding/decoding of the phase, weighted averaging can be employed at a multi-antenna receiver, allowing for phase noise suppression to leverage the large number of antennas. Hence, we observe that the performance improves by increasing the number of antennas, especially in the separate oscillator case. Further increasing the number of receive antennas results in a performance error floor, which is a function of the quality of the oscillator at the transmitter.Comment: IEEE GLOBECOM 201

    Impact of Residual Transmit RF Impairments on Training-Based MIMO Systems

    Get PDF
    Radio-frequency (RF) impairments, that exist intimately in wireless communications systems, can severely degrade the performance of traditional multiple-input multiple-output (MIMO) systems. Although compensation schemes can cancel out part of these RF impairments, there still remains a certain amount of impairments. These residual impairments have fundamental impact on the MIMO system performance. However, most of the previous works have neglected this factor. In this paper, a training-based MIMO system with residual transmit RF impairments (RTRI) is considered. In particular, we derive a new channel estimator for the proposed model, and find that RTRI can create an irreducible estimation error floor. Moreover, we show that, in the presence of RTRI, the optimal training sequence length can be larger than the number of transmit antennas, especially in the low and high signal-to-noise ratio (SNR) regimes. An increase in the proposed approximated achievable rate is also observed by adopting the optimal training sequence length. When the training and data symbol powers are required to be equal, we demonstrate that, at high SNRs, systems with RTRI demand more training, whereas at low SNRs, such demands are nearly the same for all practical levels of RTRI.Comment: Accepted for publication at the IEEE International Conference on Communications (ICC 2014), 6 pages, 5 figure
    corecore