92 research outputs found

    Ieee access special section editorial: Cloud and big data-based next-generation cognitive radio networks

    Get PDF
    In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-Time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the

    The Achievable Rate of Interweave Cognitive Radio in the Face of Sensing Errors

    Get PDF
    Cognitive radio (CR) systems are potentially capable of mitigating the spectrum shortage of contemporary wireless systems. In this paper, we provide a brief overview of CR systems and the important research milestones of their evolution, along with their standardization activities, as a result of their research. This is followed by the detailed analysis of the interweave policy-based CR network (CRN) and by a detailed comparison with the family of underlay-based CRNs. In the interweave-based CRN, sensing of the primary user's (PU) spectrum by the secondary user's (SU) has remained a challenge, because the sensing errors prevent us from fulfilling the significant throughput gains that the concept of CR promises. Since missed detection and false alarm errors in real-time spectrum sensing cannot be avoided, based on a new approach, we quantify the achievable rates of the interweave CR by explicitly incorporating the effect of sensing errors. The link between the PU transmitter and the SU transmitter is assumed to be fast fading. Explicitly, the achievable rate degradation imposed by the sensing errors is analyzed for two spectrum sensing techniques, namely, for energy detection and for magnitude squared coherence-based detection. It is demonstrated that when the channel is sparsely occupied by the PU, the reusing techniques that are capable of simultaneously providing low missed detection and false alarm probabilities cause only a minor degradation to the achievable rates. Furthermore, based on the achievable rates derived for underlay CRNs, we compare the interweave CR and the underlay CR paradigms from the perspective of their resilience against spectrum sensing errors. Interestingly, in many practical regimes, the interweave CR paradigm outperforms the underlay CR paradigm in the presence of sensing errors, especially when the SNR at the SU is below 10 dB and when the SNR at the PU is in the range of 10-40 dB. Furthermore, we also provide rules of thumb that identify regimes, where the interweave CR outperforms the underlay CR

    プライマリシステムの干渉制限を考慮した周波数共用のためのリソース割り当てに関する研究

    Get PDF
    In wireless communications, the improvement of spectral efficiency isrequired due to the shortage of frequency resource. As an effectivesolution, spectrum sharing has been attracted attention. A cognitiveradio is promising technology for realization of spectrum sharing. Inthe spectrum sharing, cognitive user (secondary user) has to protectlicensed user (primary user) according to the interference constraint.However, conventional metric of interference constraint cannot avoidlarge performance degradation in primary system with widely rangeof Signal to Noise Ratio (SNR) such as a cellular system. Additionally,conventional interference constraints do not considers schedulingbehavior in cellular system. In order to solve these problems, thispaper proposes novel metric of the interference constraint whichsupports the widely SNR region of the primary system, so calledcapacity conservation ratio (CCR). The CCR is defined as the ratio ofthe capacity of the Primary receiver without interference from thesecondary transmitter, to the decreased primary capacity due tointerference. Proposed interference constraint based on CCR canprotect primary capacities over the widely SNR region. In addition,scheduling behavior of the primary system can be protected by usingproposed interference constraint. In addition, we propose transmitpower control schemes: exact and simplified power control. The exactpower control can satisfy requirement of interference constraintwithout large margin; however, transmit power cannot be derivewithout numerical analysis. In contrast, transmit power isclosed-form solution in the simplified power control with satisfyingthe interference constraint. Finally, this thesis proposes the resourcescheduling under the interference constraint. Proposed schedulingachieves the high throughput and high user fairness in the secondarysystem without increasing feedback information compared withconventional algorithm.現在、無線通信において周波数リソース不足が深刻な問題となっており、抜本的な対策技術としてコグニティブ周波数共用が注目されている。本論文では、周波数共用において既存システムの周波数帯を他システム(2 次システム)が二次利用するために干渉制限指標及びリソース割り当てに関する研究を行った。一つ目の研究では、既存システムに与える与干渉状態の評価指標について提案を行い,幅広い通信品質の既存システムを保護可能な干渉制限について評価を行った.評価ではシステムのリンクが静的モデルおよび動的なリソース配分で変更される動的モデルを用いた.二つ目の研究では,その干渉制限達成可能な送信電力制御の検討を行った。送信電力制御を行う際に,外部からチャネル情報の一部のみが得られると仮定し,確率的に変動するフェージング要素について所望のアウテージ確率を満足できるように数値解析を行い,厳密設計および簡易設計について提案を行った.三つ目の研究では、既存システムが複数端末に対して無線リソースをスケジューリングするモデルへと拡張し,2 次システムが干渉を回避しつつ,効率的リソース割り当てに関する検討を行った。電気通信大学201

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Asynchronous device detection for cognitive device-to-device communications

    Get PDF
    Dynamic spectrum sharing will facilitate the interference coordination in device-to-device (D2D) communications. In the absence of network level coordination, the timing synchronization among D2D users will be unavailable, leading to inaccurate channel state estimation and device detection, especially in time-varying fading environments. In this study, we design an asynchronous device detection/discovery framework for cognitive-D2D applications, which acquires timing drifts and dynamical fading channels when directly detecting the existence of a proximity D2D device (e.g. or primary user). To model and analyze this, a new dynamical system model is established, where the unknown timing deviation follows a random process, while the fading channel is governed by a discrete state Markov chain. To cope with the mixed estimation and detection (MED) problem, a novel sequential estimation scheme is proposed, using the conceptions of statistic Bayesian inference and random finite set. By tracking the unknown states (i.e. varying time deviations and fading gains) and suppressing the link uncertainty, the proposed scheme can effectively enhance the detection performance. The general framework, as a complimentary to a network-aided case with the coordinated signaling, provides the foundation for development of flexible D2D communications along with proximity-based spectrum sharing
    corecore