1,560 research outputs found

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    Applications of the ACGT Master Ontology on Cancer

    Get PDF
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the ontology within the ACGT project thus far

    Next generation assisting clinical applications by using semantic-aware electronic health records

    Get PDF
    The health care sector is no longer imaginable without electronic health records. However; since the original idea of electronic health records was focused on data storage and not on data processing, a lot of current implementations do not take full advantage of the opportunities provided by computerization. This paper introduces the Patient Summary Ontology for the representation of electronic health records and demonstrates the possibility to create next generation assisting clinical applications based on these semantic-aware electronic health records. Also, an architecture to interoperate with electronic health records formatted using other standards is presented

    Application of Semantics to Solve Problems in Life Sciences

    Get PDF
    Fecha de lectura de Tesis: 10 de diciembre de 2018La cantidad de información que se genera en la Web se ha incrementado en los últimos años. La mayor parte de esta información se encuentra accesible en texto, siendo el ser humano el principal usuario de la Web. Sin embargo, a pesar de todos los avances producidos en el área del procesamiento del lenguaje natural, los ordenadores tienen problemas para procesar esta información textual. En este cotexto, existen dominios de aplicación en los que se están publicando grandes cantidades de información disponible como datos estructurados como en el área de las Ciencias de la Vida. El análisis de estos datos es de vital importancia no sólo para el avance de la ciencia, sino para producir avances en el ámbito de la salud. Sin embargo, estos datos están localizados en diferentes repositorios y almacenados en diferentes formatos que hacen difícil su integración. En este contexto, el paradigma de los Datos Vinculados como una tecnología que incluye la aplicación de algunos estándares propuestos por la comunidad W3C tales como HTTP URIs, los estándares RDF y OWL. Haciendo uso de esta tecnología, se ha desarrollado esta tesis doctoral basada en cubrir los siguientes objetivos principales: 1) promover el uso de los datos vinculados por parte de la comunidad de usuarios del ámbito de las Ciencias de la Vida 2) facilitar el diseño de consultas SPARQL mediante el descubrimiento del modelo subyacente en los repositorios RDF 3) crear un entorno colaborativo que facilite el consumo de Datos Vinculados por usuarios finales, 4) desarrollar un algoritmo que, de forma automática, permita descubrir el modelo semántico en OWL de un repositorio RDF, 5) desarrollar una representación en OWL de ICD-10-CM llamada Dione que ofrezca una metodología automática para la clasificación de enfermedades de pacientes y su posterior validación haciendo uso de un razonador OWL

    Investigating subsumption in DL-based terminologies: A case study in SNOMED CT

    Get PDF
    Formalisms such as description logics (DL) are sometimes expected to help terminologies ensure compliance with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) complies with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of SNOMED CT classes with respect to these principles. Our major results are: 31% of the classes have a single child; 27% have multiple parents; 51% do not exhibit any differentiae between the description of the parent and that of the child. The applications of this study to quality assurance for ontologies are discussed and suggestions are made for dealing with multiple inheritance

    The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology

    Get PDF
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users
    • …
    corecore