171 research outputs found

    Hierarchical Survivable Network Design Problems

    Get PDF
    We address the problem of designing two-level networks protected against single edge failures. A set of nodes must be partitioned into terminals and hubs, hubs must be connected through a backbone network, and terminals must be assigned to hubs and connected to them through access networks, being the objective to minimize the total cost. We consider two survivable structures, two-edge connected (2EC) networks and rings, in both levels of the network. We present an integer programming formulation for these problems, solve them using a branch-and-cut algorithm, and show some computational results. © 2016 Elsevier B.V

    Robust Energy Management for Green and Survivable IP Networks

    Get PDF
    Despite the growing necessity to make Internet greener, it is worth pointing out that energy-aware strategies to minimize network energy consumption must not undermine the normal network operation. In particular, two very important issues that may limit the application of green networking techniques concern, respectively, network survivability, i.e. the network capability to react to device failures, and robustness to traffic variations. We propose novel modelling techniques to minimize the daily energy consumption of IP networks, while explicitly guaranteeing, in addition to typical QoS requirements, both network survivability and robustness to traffic variations. The impact of such limitations on final network consumption is exhaustively investigated. Daily traffic variations are modelled by dividing a single day into multiple time intervals (multi-period problem), and network consumption is reduced by putting to sleep idle line cards and chassis. To preserve network resiliency we consider two different protection schemes, i.e. dedicated and shared protection, according to which a backup path is assigned to each demand and a certain amount of spare capacity has to be available on each link. Robustness to traffic variations is provided by means of a specific modelling framework that allows to tune the conservatism degree of the solutions and to take into account load variations of different magnitude. Furthermore, we impose some inter-period constraints necessary to guarantee network stability and preserve the device lifetime. Both exact and heuristic methods are proposed. Experimentations carried out with realistic networks operated with flow-based routing protocols (i.e. MPLS) show that significant savings, up to 30%, can be achieved also when both survivability and robustness are fully guaranteed

    An efficient heuristic for calculating a protected path with specified nodes

    Get PDF
    The problem of determining a path between two nodes in a network that must visit specific intermediate nodes arises in a number of contexts. For example, one might require traffic to visit nodes where it can be monitored by deep packet inspection for security reasons. In this paper a new recursive heuristic is proposed for finding the shortest loopless path, from a source node to a target node, that visits a specified set of nodes in a network. In order to provide survivability to failures along the path, the proposed heuristic is modified to ensure that the calculated path can be protected by a node-disjoint backup path. The performance of the heuristic, calculating a path with and without protection, is evaluated by comparing with an integer linear programming (ILP) formulation for each of the considered problems. The ILP solver may fail to obtain a solution in a reasonable amount of time, especially in large networks, which justifies the need for effective, computationally efficient heuristics for solving these problems. Our numerical results are also compared with previous heuristics in the literature

    Self-healing topology discovery protocol for software defined networks

    Get PDF
    “© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://ieeexplore.ieee.org/document/8319433/”This letter presents the design of a self-healing protocol for automatic discovery and maintenance of the network topology in Software Defined Networks (SDN). The proposed protocol integrates two enhanced features (i.e. layer 2 topology discovery and autonomic fault recovery) in a unified mechanism. This novel approach is validated through simulation experiments using OMNET++. Obtained results show that our protocol discovers and recovers the control topology efficiently in terms of time and message load over a wide range of generated networks.Peer ReviewedPostprint (author's final draft

    A Framework for Evaluationof Communication Bandwidth Market Models, Journal of Telecommunications and Information Technology, 2010, nr 2

    Get PDF
    The article presents a method of analysis of market-based models for resource allocation in communication networks. It consists of several stages: classification of a market model, generation of input data, data adaptation to a tested model, test calculations and, finally, presentation and interpretation of results. A set of general criteria to assess various models has been proposed. Tests are run using dedicated computer applications, data is stored in open XML-based format originated in the multicommodity market model. Network topologies are derived from the SNDlib library
    corecore