492 research outputs found

    The Time-Triggered Wireless Architecture

    Get PDF
    Wirelessly interconnected sensors, actuators, and controllers promise greater flexibility, lower installation and maintenance costs, and higher robustness in harsh conditions than wired solutions. However, to facilitate the adoption of wireless communication in cyber-physical systems (CPS), the functional and non-functional properties must be similar to those known from wired architectures. We thus present Time-Triggered Wireless (TTW), a wireless architecture for multi-mode CPS that offers reliable communication with guarantees on end-to-end delays among distributed applications executing on low-cost, low-power embedded devices. We achieve this by exploiting the high reliability and deterministic behavior of a synchronous transmission based communication stack we design, and by coupling the timings of distributed task executions and message exchanges across the wireless network by solving a novel co-scheduling problem. While some of the concepts in TTW have existed for some time and TTW has already been successfully applied for feedback control and coordination of multiple mechanical systems with closed-loop stability guarantees, this paper presents the key algorithmic, scheduling, and networking mechanisms behind TTW, along with their experimental evaluation, which have not been known so far. TTW is open source and ready to use: https://ttw.ethz.ch

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Analysis of Real-Time Capabilities of Dynamic Scheduled System

    Get PDF
    This PhD-thesis explores different real-time scheduling approaches to effectively utilize industrial real-time applications on multicore or manycore platforms. The proposed scheduling policy is named the Time-Triggered Constant Phase scheduler for handling periodic tasks, which determines time windows for each computation and communication in advance by using the dependent task model

    A Real-time Calculus Approach for Integrating Sporadic Events in Time-triggered Systems

    Full text link
    In time-triggered systems, where the schedule table is predefined and statically configured at design time, sporadic event-triggered (ET) tasks can only be handled within specially dedicated slots or when time-triggered (TT) tasks finish their execution early. We introduce a new paradigm for synthesizing TT schedules that guarantee the correct temporal behavior of TT tasks and the schedulability of sporadic ET tasks with arbitrary deadlines. The approach first expresses a constraint for the TT task schedule in the form of a maximal affine envelope that guarantees that as long as the schedule generation respects this envelope, all sporadic ET tasks meet their deadline. The second step consists of modeling this envelope as a burst limiting constraint and building the TT schedule via simulating a modified Least-Laxity-First (LLF) scheduler. Using this novel technique, we show that we achieve equal or better schedulability and a faster schedule generation for most use-cases compared to other approaches inspired by, e.g., hierarchical scheduling. Moreover, we present an extension to our method that finds the most favourable schedule for TT tasks with respect to ET schedulability, thus increasing the probability of the computed TT schedule remaining feasible when ET tasks are later added or changed

    A Survey of Scheduling in Time-Sensitive Networking (TSN)

    Full text link
    TSN is an enhancement of Ethernet which provides various mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the transmission of their packets by edge nodes is coordinated in such a way that none or very little queuing delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work, we consider scheduling in TSN which comprises the computation of periodic transmission instants at edge nodes and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of TSN features and standards. We state the TSN scheduling problem and explain common extensions which also include optimization problems. We review scheduling and optimization methods that have been used in this context. Then, the contribution of currently available research work is surveyed. We extract and compile optimization objectives, solved problem instances, and evaluation results. Research domains are identified, and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.Comment: 34 pages, 19 figures, 9 tables 110 reference

    Scheduling & routing time-triggered traffic in time-sensitive networks

    Get PDF
    The application of recent advances in computing, cognitive and networking technologies in manufacturing has triggered the so-called fourth industrial revolution, also referred to as Industry 4.0. Smart and flexible manufacturing systems are being conceived as a part of the Industry 4.0 initiative to meet the challenging requirements of the modern day manufacturers, e.g., production batch sizes of one. The information and communication technologies (ICT) infrastructure in such smart factories is expected to host heterogeneous applications ranging from the time-sensitive cyber-physical systems regulating physical processes in the manufacturing shopfloor to the soft real-time analytics applications predicting anomalies in the assembly line. Given the diverse demands of the applications, a single converged network providing different levels of communication guarantees to the applications based on their requirements is desired. Ethernet, on account of its ubiquity and its steadily growing performance along with shrinking costs, has emerged as a popular choice as a converged network. However, Ethernet networks, primarily designed for best-effort communication services, cannot provide strict guarantees like bounded end-to-end latency and jitter for real-time traffic without additional enhancements. Two major standardization bodies, viz., the IEEE Time-sensitive Networking (TSN) Task Group (TG) and the IETF Deterministic Networking (DetNets) Working Group are striving towards equipping Ethernet networks with mechanisms that would enable it to support different classes of real-time traffic. In this thesis, we focus on handling the time-triggered traffic (primarily periodic in nature) stemming from the hard real-time cyber-physical systems embedded in the manufacturing shopfloor over Ethernet networks. The basic approach for this is to schedule the transmissions of the time-triggered data streams appropriately through the network and ensure that the allocated schedules are adhered with. This approach leverages the possibility to precisely synchronize the clocks of the network participants, i.e., end systems and switches, using time synchronization protocols like the IEEE 1588 Precision Time Protocol (PTP). Based on the capabilities of the network participants, the responsibility of enforcing these schedules can be distributed. An important point to note is that the network utilization with respect to the time-triggered data streams depends on the computed schedules. Furthermore, the routing of the time-triggered data streams also influences the computed transmission schedules, and thus, affects the network utilization. The question however remains as to how to compute transmission schedules for time-triggered data streams along with their routes so that an optimal network utilization can be achieved. We explore, in this thesis, the scheduling and routing problems with respect to the time-triggered data streams in Ethernet networks. The recently published IEEE 802.1Qbv standard from the TSN-TG provides programmable gating mechanisms for the switches enabling them to schedule transmissions. Meanwhile, the extensions specified in the IEEE 802.1Qca standard or the primitives provided by OpenFlow, the popular southbound software-defined networking (SDN) protocol, can be used for gaining an explicit control over the routing of the data streams. Using these mechanisms, the responsibility of enforcing transmission schedules can be taken over by the end systems as well as the switches in the network. Alternatively, the scheduling can be enforced only by the end systems or only by the switches. Furthermore, routing alone can also be used to isolate time-triggered data streams, and thus, bound the latency and jitter experienced by the data streams in absence of synchronized clocks in the network. For each of the aforementioned cases, we formulate the scheduling and routing problem using Integer Linear Programming (ILP) for static as well as dynamic scenarios. The static scenario deals with the computation of schedules and routes for time-triggered data streams with a priori knowledge of their specifications. Here, we focus on computing schedules and routes that are optimal with respect to the network utilization. Given that the scheduling problems in the static setting have a high time-complexity, we also present efficient heuristics to approximate the optimal solution. With the dynamic scheduling problem, we address the modifications to the computed transmission schedules for adding further or removing already scheduled time-triggered data streams. Here, the focus lies on reducing the runtime of the scheduling and routing algorithms, and thus, have lower set-up times for adding new data streams into the network

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    On the Scalability of Constraint Solving for Static/Off-Line Real-Time Scheduling

    Get PDF
    Recent papers have reported on successful application of constraint solving techniques to off-line real-time scheduling problems, with realistic size and complexity. Success allegedly came for two reasons: major recent advances in solvers efficiency and use of optimized, problem-specific constraint representations. Our current objective is to assess further the range of applicability and the scalability of such constraint solving techniques based on a more general and agnostic evaluation campaign. For this, we have considered a large number of synthetic scheduling problems and a few real-life ones, and attempted to solve them using 3 state-of-the-art solvers, namely CPLEX, Yices2, and MiniZinc/G12. Our findings were that, for all problems considered, constraint solving does scale to a certain limit, then diverges rapidly. This limit greatly depends on the specificity of the scheduling problem type. All experimental data (synthetic task systems, SMT/ILP models) are provided so as to allow experimental reproducibility
    • …
    corecore