146 research outputs found

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica

    Contribution to advanced sensor development for passive imaging of the Earth

    Get PDF
    This work has been formally undertaken within the frame of the scholarship number BES-2012-053917 of 1 December 2012, by the "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad" related to the program "Formación de Personal Investigador (FPI)". The scholarship is related to the research project at the Universitat Politècnica de Catalunya (UPC) number TEC2011-25865. In a more general scope, this thesis is related to the Remote Sensing Laboratory (Signal Theory & Communication Department, UPC) on-going activities, within the SMOS (Soil Moisture and Ocean Salinity) mission by the European Space Agency (ESA). These activities have been organized to provide original advances in the following four main topics: 1) SMOS calibration and performance. Since the launch of the instrument in 2009, SMOS imaging has been performing exclusively in co-polar mode. However, SMOS measurements are fully polarimetric. This feature was not operationally exploited due to the large errors yielded by full-pol images. In this context my work was addressed to support better characterization of the antenna. Based on the idea that SMOS polarization mode was recently implemented using Full-pol measurements, the so-called relative phases have been recomputed by using co-polar and cross-polar measurements. SMOS moderate Side Lobe Level (SLL) is caused by the limited coverage of the measured visibility samples in the frequency domain, so another objective of this work has been devoted to assess the impact of calibration errors into SMOS side lobes level (SLL). The main objective on this topic has been to reproduce by simulation SMOS measured side-lobe levels (SLL) by adding errors to a point source response, in order to identify the dominant source of error. During commissioning phase it was detected that SMOS heater system were introducing small and random sporadic PMS offset steps (jumps) in several units. Another work during this thesis has been devoted to mitigate those PMS jumps by trimming calibration date from single LICEF averaged TA jumps over the ocean. 2) SMOS spatial bias assessment. SMOS measurements still have mathematical image reconstruction errors that must be properly assessed. The aim of this work is to focus on the so-called "floor error", defined in an error free end-to-end image reconstruction simulation. In order to reduce this error, different inversion approaches have been implemented and tested, as the so-called Gibbs 2 approach 3) SMOS improved imaging. One of the problems of most concern within the SMOS mission is related to the so-called "land-sea contamination" (LSC), an artificial increase of ocean brightness temperature close to land masses. Therefore, a systematic assessment has been performed in this thesis in order to understand and mitigate this artifact. This subject is related to one of the main original outcomes of the thesis, since it has a relevant impact on the quality of SMOS imaging. The LSC mitigation technique developed during the work of the thesis has been presented and validated by different methods. 4) SMOS follow-on missions advanced configurations. This work is devoted to assess the impact of instrumental errors on the radiometric accuracy (pixel bias) of one of the selected array configurations of the so-called Super-MIRAS instrument. The aim of this work has been focused on the assessment of different array geometries and instrument architectures of future L-band synthetic aperture radiometers to improve spatial resolution while maintaining radiometric sensitivity.Esta tesis se ha llevado a cabo en el marco de la beca FPI BES-2012-053917 del 1 de diciembre de 2012, por el "Secretario de Estado de Investigación del Ministerio de Economía y Competitividad", asociada al proyecto TEC2011-25865 (Universidad Politècnica de Catalunya). En un sentido más amplio, el trabajo se engloba dentro de las actividades del Grupo de Teledetección (RSLab) del Departamento de Teoría de la Señal y Comunicaciones, UPC, en el marco de la misión SMOS (Soil Moisture and Ocean Salinity) de la Agencia Espacial Europea del Espacio (ESA). El trabajo se divide en: 1) Calibración y prestaciones del sensor SMOS Desde el lanzamiento del instrumento en 2009, la imagen de SMOS se ha obtenido utilizando medidas en modo co-polar. Sin embargo, las medidas en SMOS se realizan en full-pol. Esto no se había llevado a cabo debido a los grandes errores que se obtenían con imágenes en full-pol. En este contexto mi trabajo se ha enfocado en la realización de una mejor caracterización de la antena. Basado en la idea de que el modo full-pol ha sido recientemente implementado en SMOS, las fases relativas entre antenas han sido recalculadas utilizando medidas co-polares y cross-polares. Los lóbulos secundarios de SMOS (SLL) son causados por la cobertura limitada de las visibilidades medidas en el dominio frecuencial, así que otro de los objetivos de este trabajo ha sido analizar el impacto de errores de calibración en los lóbulos secundarios de SMOS. Básicamente se han reproducido los lóbulos secundarios de SMOS mediantes simulaciones añadiendo errores a una fuente puntual, identificando las principales fuentes de error. Durante la fase de comisionado se detectó que el sistema de calentamiento de SMOS introducía pequeños saltos aleatorios del offset del PMS en diferentes unidades. Para hacer un seguimiento y corregir estos saltos se realizaron calibraciones de offset semanales justo después de la fase de comisionado, así que otro de los trabajos realizados en esta tesis ha sido dirigido a mitigar estos saltos introduciendo calibraciones adicionales antes de los mismos a partir de medir la temperatura de antena media calculada en el océano. 2) Técnicas de reducción de los errores espaciales SMOS tiene un error matemático de reconstrucción en la imagen que ha sido investigado en este trabajo. Así que este trabajo se ha focalizado en el "floor error" definido como el error de reconstrucción en un instrumento ideal libre de errores. Para reducir este error se han utilizado diferentes aproximaciones como Gibbs 2. 3) Mejoras en la inversión de imagen Uno de los mayores problemas durante los primeros cinco años de misión SMOS ha sido la llamada "land-sea contamination" (contaminación tierra-mar). Así pues, se ha realizado un estudio sistemático para comprender y mitigar este artefacto. Este tema está relacionado con uno de los descubrimientos más importantes de esta tesis ya que este tiene un gran impacto en la calidad de la imagen de SMOS. La técnica encontrada para mitigar este error es presentada y validada mediante diferentes métodos. 4) Misiones futuras Este trabajo está enfocado en la investigación del impacto de errores instrumentales en la precisión radiométrica de errores espaciales de una de las posibles nuevas configuraciones de array propuestas para construir un nuevo instrumento llamado Super-MIRAS. El propósito principal de este trabajo está orientado en el desarrollo de diferentes geometrías de arrays y arquitecturas de instrumentos para una futura misión en banda L, en la que se diseñaría un nuevo radiómetro de apertura sintética para mejorar la resolución espacial manteniendo la sensibilidad radiométrica.Postprint (published version

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe

    Statistical analysis and combination of active and passive microwave remote sensing methods for soil moisture retrieval

    Get PDF
    Knowledge about soil moisture and its spatio-temporal dynamics is essential for the improvement of climate and hydrological modeling, including drought and flood monitoring and forecasting, as well as weather forecasting models. In recent years, several soil moisture products from active and passive microwave remote sensing have become available with high temporal resolution and global coverage. Thus, the validation and evaluation of spatial and temporal soil moisture patterns are of great interest, for improving soil moisture products as well as for their proper use in models or other applications. This thesis analyzes the different accuracy levels of global soil moisture products and identifies the major influencing factors on this accuracy based on a small catchment example. Furthermore, on global scale, structural differences betweenthe soil moisture products were investigated. This includes in particular the representation of spatial and temporal patterns, as well as a general scaling law of soil moisture variability with extent scale. The results of the catchment scale as well as the global scale analyses identified vegetation to have a high impact on the accuracy of remotely sensed soil moisture products. Therefore, an improved method to consider vegetation characteristics in pasive soil moisture retrieval from active radar satellite data was developed and tested. The knowledge gained by this thesis will contribute to improve soil moisture retrieval of current and future microwave remote sensors (e.g. SMOS or SMAP)

    SMOS Flight external calibration and monitoring

    Get PDF
    This project has been devoted to develop several tools to assess in-flight performance of the MIRAS SMOS amplitude calibration. It has been mainly focused to analyze the performance of current internal calibration by means of the so-called one-point calibration. This allowed to develop External CAS and Antenna efficiency correction parameters to improve overall MIRAS amplitude calibration accuracy

    Thickness retrieval and emissivity modeling of thin sea ice at L-band for SMOS satellite observations

    Get PDF
    In this study we have developed an empirical retrieval for thickness of young and first-year ice during the freeze up period for the L-band passive microwave radiometer Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) on the Soil Moisture and Ocean Salinity (SMOS) satellite. The retrieval is based on intensity and polarization difference using the incidence angle range of 40° to 50° and is validated using data from airborne EM-Bird, Moderate-resolution Imaging Spectroradiometer (MODIS) thermal imagery, and self consistency checks for ice thicknesses up to 50 cm with an error of 30 % on average. In addition, we modeled the microwave emission for Arctic first-year ice using the sea ice version of the Microwave Emission Model of Layered Snowpacks (MEMLS). The sea ice conditions used as input for MEMLS were generated using a thermodynamic energy balance model (based on the Crocus model) driven by reanalysis data from European Centre for Medium-Range Weather Forecasts (ECMWF). From unexpected features in the modeled microwave emission and disagreements with the empirically trained SMOS retrieval several shortcomings of the energy balance model and MEMLS were identified and corrected. The corrections include a treatment of mismatch of layer definition between the energy balance model and MEMLS, an adaptation of the reflection coefficient for lossy media in MEMLS, and several smaller corrections. For comparison, two simple models ignoring volume scattering, one incoherent and one coherent, were set up and were found to be able to reproduce the results of the more complex MEMLS model on average. With the simple models, the effects of thin coherent layers, the snow cover, the interface roughness and three different dielectric mixture models for sea ice were explored. It was found that the choice of the mixture model is essential for the relation of sea ice thickness to brightness temperatures in L-band, suggesting sea ice thickness sensitivities from few centimeters to several meters for salinity conditions of the global oceans. The interface properties, especially at the sea ice bottom, were found to be a major uncertainty source when modeling the microwave emission of thin sea ice. In addition, the variability in snow depth, the interface roughness, and the ice surface salinity and temperature were found to have a similar influence on the resulting brightness temperatures, with a strong effect on horizontally (up to 30 K) and weak effect on vertically polarized radiation (up to 10 K) for temperatures below 260 K. A model for simulating coherent microwave emission for thickness distributions of ice and snow was prepared to overcome weaknesses from the single thickness coherent and incoherent models. Comparison to the incoherent model showed that for realistic snow depth distributions obtained from Operation IceBridge (OIB) coherence effects can change the brightness temperatures on the scale of a SMOS footprint up to 10 K in horizontal polarization. These findings suggest that the retrieval for the thickness of thin sea ice with satellite based L-band sensors yield higher uncertainties than expected from earlier studies

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes

    Get PDF
    The scale difference between point in situ soil moisture measurements and low resolution satellite products limits the quality of any validation efforts in heterogeneous regions. Cosmic Ray Neutron Probes (CRNP) could be an option to fill the scale gap between both systems, as they provide area-average soil moisture within a 150–250 m radius footprint. In this study, we evaluate differences and similarities between CRNP observations, and surface soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), the METOP-A/B Advanced Scatterometer (ASCAT), the Soil Moisture Active and Passive (SMAP), the Soil Moisture and Ocean Salinity (SMOS), as well as simulations from the Global Land Data Assimilation System Version 2 (GLDAS2). Six CRNPs located on five continents have been selected as test sites: the Rur catchment in Germany, the COSMOS sites in Arizona and California (USA), and Kenya, one CosmOz site in New South Wales (Australia), and a site in Karnataka (India). Standard validation scores as well as the Triple Collocation (TC) method identified SMAP to provide a high accuracy soil moisture product with low noise or uncertainties as compared to CRNPs. The potential of CRNPs for satellite soil moisture validation has been proven; however, biomass correction methods should be implemented to improve its application in regions with large vegetation dynamics
    corecore