2,244 research outputs found

    The MIRAS “all-licef” calibration mode

    Get PDF
    Since each of the individual elements of the MIRAS array is a total power radiometer, the zero-spacing visibility can be obtained by the average of all the corresponding antenna temperatures. The main advantage of this option with respect to using the NIR measurements is that amplitude calibration is more consistent between zero-spacing visibility and the rest. On the other hand, total power radiometers are not usually as stable as noise injection radiometers, so a small loose of stability could be expected. Preliminary results show, however, similar performance.Peer ReviewedPostprint (author's final draft

    Ocean salinity observations with SMOS mission

    Get PDF
    The purpose of this paper is to present the capabilities of SMOS (Soil Moisture and Ocean Salinity mission) for the global mapping of ocean salinity from space. SMOS has been selected by the European Space Agency as the second Earth Explorer Opportunity with a launch date in June 2005. The sensor embarked on SMOS is MIRAS, a Microwave Imaging Radiometer with Aperture Synthesis. MIRAS works at L-band, in the two-polarisations, and has full polarimetric capability. The measurement of sea surface salinity (SSS) is one of the challenges of SMOS. This paper presents first the scientific requirements for a number of oceanographic applications. The scientific requirements are then translated into instrument accuracy, sensitivity, stability and spatial resolution. Major sources of error in the retrieval of ocean salinity will be addressed through an experimental campaign which is described.Peer ReviewedPostprint (published version

    SMOS calibration and validation activities with airborne interferometric radiometer HUT-2D during spring 2010

    Get PDF
    In this paper we present calibration and validation activities of European Space Agency’s SMOS mission, which utilize airborne interferomentric L-band radiometer system HUT-2D of the Aalto University. During spring 2010 the instrument was used to measure three SMOS validation target areas, one in Denmark and two in Germany. We present these areas shortly, and describe the airborne activities. We show some exemplary measurements of the radiometer system and demonstrate the studies using the data

    Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula

    Get PDF
    The aim of this study is to compare the surface soil moisture (SSM) retrieved from ESA's Soil Moisture and Ocean Salinity mission (SMOS) with the output of the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEm) land surface model forced with two distinct atmospheric data sets for the period 2010 to 2012. The comparison methodology is first established over the REMEDHUS (Red de Estaciones de MEDiciĂłn de la Humedad def Suelo) soil moisture measurement network, a 30 by 40. km catchment located in the central part of the Duero basin, then extended to the whole Iberian Peninsula (IP). The temporal correlation between the in-situ, remotely sensed and modelled SSM are satisfactory (r. >. 0.8). The correlation between remotely sensed and modelled SSM also holds when computed over the IP. Still, by using spectral analysis techniques, important disagreements in the effective inertia of the corresponding moisture reservoir are found. This is reflected in the spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates, which is poor (Âż. ~. 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products.Peer ReviewedPostprint (published version

    Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator

    Get PDF
    SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions

    Temporal stability of soil moisture and radar backscatter observed by the advanced Synthetic Aperture Radar (ASAR)

    Get PDF
    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R-2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments
    • …
    corecore