7,420 research outputs found
NGC 6535: the lowest mass Milky Way globular cluster with a Na-O anti-correlation? Cluster mass and age in the multiple population context
To understand globular clusters (GCs) we need to comprehend how their
formation process was able to produce their abundance distribution of light
elements. In particular, we seek to figure out which stars imprinted the
peculiar chemical signature of GCs. One of the best ways is to study the
light-element anti-correlations in a large sample of GCs that are analysed
homogeneously. As part of our spectroscopic survey of GCs with FLAMES, we
present here the results of our study of about 30 red giant member stars in the
low-mass, low-metallicity Milky Way cluster NGC 6535. We measured the
metallicity (finding [Fe/H]=-1.95, rms=0.04 dex in our homogeneous scale) and
other elements of the cluster and, in particular, we concentrate here on O and
Na abundances. These elements define the normal Na-O anti-correlation of
classical GCs, making NGC 6535 perhaps the lowest mass cluster with a confirmed
presence of multiple populations. We updated the census of Galactic and
extragalactic GCs for which a statement on the presence or absence of multiple
populations can be made on the basis of high-resolution spectroscopy
preferentially, or photometry and low-resolution spectroscopy otherwise; we
also discuss the importance of mass and age of the clusters as factors for
multiple populations.Comment: In press on A&A. Table 2 available at CD
Target Selection for the SDSS-IV APOGEE-2 Survey
APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing
roughly 300,000 stars across the entire sky. It is the successor to APOGEE and
is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding
upon APOGEE's goals of addressing critical questions of stellar astrophysics,
stellar populations, and Galactic chemodynamical evolution using (1) an
enhanced set of target types and (2) a second spectrograph at Las Campanas
Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red
clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and
numerous other Milky Way and Local Group sources across the entire sky from
both hemispheres. In this paper, we describe the APOGEE-2 observational design,
target selection catalogs and algorithms, and the targeting-related
documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A
- …
