650 research outputs found

    Fiber-optic breath sensors: A comparison study

    Get PDF
    The paper presents a comparative study of three fiber optic sensors based on the fiber Bragg grating (FBG). The basic monitored parameter is the respiratory rate of the human body. Fiber-optic sensors are immune to electromagnetic interference (EMI). This fact singles them out as ideal for use in magnetic resonance environments (typically in MRI -magnetic resonance imaging) as a prediction of hyperventilation states in patients. These patient conditions arise as a result of the closed tunnel environment in MR scanners. The results (10 volunteers with written consent) were compared with the results using the conventional respiratory belt (RB) in a laboratory environment and processed using the objective Bland-Altman (B-A) method.Web of Science40635

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different body postures

    Get PDF
    Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p \u3e 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference \u3c 0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses

    A non-invasive multichannel hybrid fiber-optic sensor system for vital sign monitoring

    Get PDF
    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.Web of Science171art. no. 11

    Wearable sensors for respiration monitoring: a review

    Get PDF
    This paper provides an overview of flexible and wearable respiration sensors with emphasis on their significance in healthcare applications. The paper classifies these sensors based on their operating frequency distinguishing between high-frequency sensors, which operate above 10 MHz, and low-frequency sensors, which operate below this level. The operating principles of breathing sensors as well as the materials and fabrication techniques employed in their design are addressed. The existing research highlights the need for robust and flexible materials to enable the development of reliable and comfortable sensors. Finally, the paper presents potential research directions and proposes research challenges in the field of flexible and wearable respiration sensors. By identifying emerging trends and gaps in knowledge, this review can encourage further advancements and innovation in the rapidly evolving domain of flexible and wearable sensors.This work was supported by the Spanish Government (MICINN) under Projects TED2021-131209B-I00 and PID2021-124288OB-I00.Peer ReviewedPostprint (published version

    Updates of Wearing Devices (WDs) In Healthcare, And Disease Monitoring

    Get PDF
     With the rising pervasiveness of growing populace, aging and chronic illnesses consistently rising medical services costs, the health care system is going through a crucial change from the conventional hospital focused system to an individual-focused system. Since the twentieth century, wearable sensors are becoming widespread in medical care and biomedical monitoring systems, engaging consistent estimation of biomarkers for checking of the diseased condition and wellbeing, clinical diagnostics and assessment in biological fluids like saliva, blood, and sweat. Recently, the improvements have been centered around electrochemical and optical biosensors, alongside advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have created with a mix of multiplexed biosensing, microfluidic testing and transport frameworks incorporated with flexible materials and body connections for additional created wear ability and effortlessness. These wearables hold guarantee and are fit for a higher understanding of the relationships between analyte focuses inside the blood or non-invasive biofluids and feedback to the patient, which is fundamentally significant in ideal finding, therapy, and control of diseases. In any case, cohort validation studies and execution assessment of wearable biosensors are expected to support their clinical acceptance. In the current review, we discussed the significance, highlights, types of wearables, difficulties and utilizations of wearable devices for biological fluids for the prevention of diseased conditions and real time monitoring of human wellbeing. In this, we sum up the different wearable devices that are developed for health care monitoring and their future potential has been discussed in detail

    Smart Face Masks for Covid-19 Pandemic Management: A Concise Review of Emerging Architectures, Challenges and Future Research Directions

    Get PDF
    Smart sensing technology has been playing tremendous roles in digital healthcare management over time with great impacts. Lately, smart sensing has awoken the world by the advent of Smart Face Masks (SFM) in the global fight against the deadly Coronavirus (Covid-19) pandemic. In turn, a number of research studies on innovative SFM architectures and designs are emerging. However, there is currently no study that has systematically been conducted to identify and comparatively analyze the emerging architectures and designs of SFMs, their contributions, socio-technological implications, and current challenges. In this paper, we investigate the emerging SFMs in response to Covid-19 pandemic and provide a concise review of their key features and characteristics, design, smart technologies, and architectures. We also highlight and discuss the socio-technological opportunities posed by the use of SFMs and finally present directions for future research. Our findings reveal four key features that can be used to evaluate SFMs to include reusability, self-power generation ability, energy awareness and aerosol filtration efficiency. We discover that SFM has potential for effective use in human tracking, contact tracing, disease detection and diagnosis or in monitoring asymptotic populations in future pandemics. Some SFMs have also been carefully designed to provide comfort and safety when used by patients with other respiratory diseases or comorbidities. However, some identified challenges include standards and quality control, ethical, security and privacy concerns

    Research progress of flexible wearable stress sensor

    Get PDF
    Flexible wearable pressure sensors are widely used in health diagnosis, sports monitoring, rehabilitation medicine, entertainment, and other fields due to some factors such as the stretch ability, bendability, light weight, portability, and excellent electrical properties. In recent years, significant progress has been made in flexible pressure sensors, and a variety of flexible pressure sensors that able to measure health status have been applied to the pulse wave, movement, respiration, and electrocardiogram (ECG) detection. However, there are still many problems to be solved in the development of flexible pressure sensors. This article summarizes the development of flexible pressure sensors in recent years, from the working principle to the structural design of the flexible pressure sensors; designs to build a high-performance flexible pressure sensors; discusses the problems existing in current flexible pressure sensors and envisions the development trend of flexible pressure sensors in the future. Flexible pressure sensors with excellent flexibility, good biocompatibility, rapid response, high sensitivity, and multifunctional integration have shown a broad application prospects

    Magnetic resonance imaging compatible non-invasive fibre-optic sensors based on the Bragg gratings and interferometers in the application of monitoring heart and respiration rate of the human body: A comparative study

    Get PDF
    The publication presents a comparative study of two fibre-optic sensors in the application of heart rate (HR) and respiratory rate (RR) monitoring of the human body. After consultation with clinical practitioners, two types of non-invasive measuring and analysis systems based on fibre Bragg grating (FBG) and fibre-optic interferometer (FOI) have been designed and assembled. These systems use probes (both patent pending) that have been encapsulated in the bio-compatible polydimethylsiloxane (PMDS). The main advantage of PDMS is that it is electrically non-conductive and, as well as optical fibres, has low permeability. The initial verification measurement of the system designed was performed on four subjects in a harsh magnetic resonance (MR) environment under the supervision of a senior radiology assistant. A follow-up comparative study was conducted, upon a consent of twenty volunteers, in a laboratory environment with a minimum motion load and discussed with a head doctor of the Radiodiagnostic Institute. The goal of the laboratory study was to perform measurements that would simulate as closely as possible the environment of harsh MR or the environment of long-term health care facilities, hospitals and clinics. Conventional HR and RR measurement systems based on ECG measurements and changes in the thoracic circumference were used as references. The data acquired was compared by the objective Bland-Altman (B-A) method and discussed with practitioners. The results obtained confirmed the functionality of the designed probes, both in the case of RR and HR measurements (for both types of B-A, more than 95% of the values lie within the +/- 1.96 SD range), while demonstrating higher accuracy of the interferometric probe (in case of the RR determination, 95.66% for the FOI probe and 95.53% for the FBG probe, in case of the HR determination, 96.22% for the FOI probe and 95.23% for the FBG probe).Web of Science1811art. no. 371

    Flexible stretchable electronics for sport and wellbeing applications

    Get PDF
    Wearable electronics are becoming increasingly widespread in modern society. Though these devices are intended to be worn, integrated into clothing and other everyday objects, the technologies and processes used to manufacture them is no different than those that manufacture laptops and mobile phones. Many of these devices are intended to monitor the user’s health, activity and general wellbeing, within clinical, recreational and assistive environments. Consequently, the inherent incompatibility of these rigid devices with the soft, elastic structure of the human body can in some cases can be uncomfortable and inconvenient for everyday life. For devices to take the step from a ‘wearable’ to an ‘invisible’, a drastic rethinking of electronics manufacturing is required.The fundamental aim of this research is to establish parameters of usefulness and an array of materials with complimentary processes that would assist in transitioning devices to long term almost invisible items that can assist in improving the health of the wearer. In order to approach this problem, a novel architecture was devised that utilised PDMS as a substrate and microfluid channels of Galinstan liquid alloy for interconnects. CO2 laser machining was investigated as a means of creating channels and vias on PDMS substrates. Trace speeds and laser power outputs were investigated in order to find an optimal combination. The results displayed upper limits for power densities; where surpassing this limit resulted in poor repeatability and surface finish. It was found that there was an optimal set of trace speeds that ranged from approximately 120mm/s to 190mm/s that resulted in the most reliable and repeatable performance. Due to the complex nature of a materials variable energy absorption properties, it is not possible to quantify a single optimal parameter set.To understand the performance of these devices in situ, finite element analysis was employed to model deformations that such a device could experience. The aims here were to investigate the bond strength required to prevent delamination, between the silicon-PDMS and PDMS-PDMS bonds, in addition to the stress applied to the silicone die during these deformations. Based upon the applied loads the required bond strengths would need to be at least ~65kPa to maintain PDMS-PDMS adhesion during these tests, while stress on the silicone-PDMS adhesion required an expected v higher ~160kPa, both of which are within the reach of existing bonding techniques that are capable of withstanding a pressure of ~600kPa before failure occurs. Stress on the silicon die did not exceed ~7.8 MPa during simulation, which is well below the fracture stress.By developing knowledge about how various components of such a system will respond during use and under stress, it allows future engineers to make informed design decisions and develop better more resilient products.</div

    Conception and evaluation of a washable multimodal smart textile

    Get PDF
    Smart textiles can support people with specific needs and diseases, such as diabetes or heart disease. Currently there are efforts to combine continuous mobile monitoring with other health-related conditions. On this basis, algorithms could be developed that can be used to detect unusual or critical conditions. A study was to investigate whether a previously developed washable Multi-Modal Smart Textile (MMST), based on inexpensive materials, would provide valid and reliable results with regard to the vital parameters of pulse, temperature and mobility. The measurement of the vital parameters was carried out with the developed prototype MMST as well as with validated devices. All electronics including the rechargeable NiMH has been washed more than 30 times with different methods and it remained fully functional. The intraclass correlation coefficients (ICC) for pulse (temperature) measurement ranged between 0.036 and 0.232 (0.077 and 0.817) depending on the activity of the tested individuals (standing, sitting, lying down, moving). Cohen's Kappa for the detection of the body position was 0.765. For the parameter of pulse, the results indicated an insufficient derivation for both validity and reliability. Due to flaws in the methodology applied, the validly and reliably for the parameter of temperature could not be determined. Valid and reliable results were obtained for the parameter mobility/change of position. If the MMST (after modification of the prototype) achieves reliable results, there are many advantages for people giving and receiving care on a budget price, even in threatening emergency situations
    corecore