19 research outputs found

    Physical-Layer Encryption Using Digital Chaos for Secure OFDM Transmission

    Get PDF
    Due to the broadcasting nature of passive optical network (PON), data security is challenging. For the transmission of orthogonal frequency division multiplexing (OFDM) signals, the high peak-to-average power ratio (PAPR) is considered as one of the major drawbacks. This chapter reviews the digital chaos-based secure OFDM data encryption schemes, where the transmission performance is improved via PAPR reduction. The digital chaos is incorporated into the signal scrambling approaches: selective mapping (SLM), partial transmit sequence (PTS); and precoding approaches: discrete Fourier transform (DFT) and Walsh-Hadamard transform (WHT) for PAPR reduction. Multi-fold data encryption is achieved with a huge key space provided by digital chaos, to enhance the physical-layer security for OFDM-PON, while the pseudo-random properties of digital chaos are applied for PAPR reduction, which consequently improves the transmission performance. The evidences of these encryption approaches are presented in terms of theories, simulations, as well as experimental demonstrations. The chaotic data encryption schemes could be promising candidates for next-generation OFDM-PON

    Chip Interleaving and its Optimization for PAPR Reduction in MC-CDMA

    Get PDF
    This paper analyzes the usability of peak to average power ratio (PAPR) reduction in multicarrier code division multiple access (MC-CDMA) by the chip interleaving optimization. This means chip position formatting to PAPR minimization. One chip interleaving pattern is used for all users in system (all spreading sequences). Dependency on number of subcarriers and spreading sequence length is simulated. The impact on amplitude histogram is presented and relation to random interleaving pattern is shown

    Digital signal processing techniques for peak-to-average power ratio mitigation in MIMO–OFDM systems

    Get PDF
    The focus of this thesis is to mitigate the very large peak-to-average transmit power ratios (PAPRs) inherent to conventional orthogonal frequency division multiplexing (OFDM) systems, particularly in the context of transmission over multi-input multi-output (MIMO) wireless broadband channels. This problem is important as a large PAPR generally needs an expensive radio frequency (RF) power amplifier at the transmitter due to the requirement for linear operation over a wide amplitude range and such a cost would be compounded when multiple transmit antennas are used. Advanced signal processing techniques which can reduce PAPR whilst retain the integrity of digital transmission therefore have considerable potential for application in emergent MIMO–OFDM wireless systems and form the technical contributions of this study. [Continues.

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    An Overview of PAPR Reduction Techniques for an MC-CDMA System

    Get PDF
    Abstract-MC-CDMA is the most promising technique for high bit rate and high capacity transmission in wireless communication. One of the challenging issues of MC-CDMA system is very high PAPR due to large number of sub-carriers which reduces the system efficiency. This paper describes the various PAPR reduction techniques for MC-CDMA system. Criterion for the selection of PAPR reduction technique and also the comparison between the reduction techniques has been discussed
    corecore