127 research outputs found

    A Low-Complexity SLM PAPR Reduction Scheme for OFDMA

    Get PDF
    In orthogonal frequency division multiplexing (OFDM) systems, selected mapping (SLM) techniques are widely used to minimize the peak to average power ratio (PAPR). The candidate signals are generated in the time domain by linearly mixing the original time-domain transmitted signal with numerous cyclic shift equivalents to reduce the amount of Inverse Fast Fourier Transform (IFFT) operations in typical SLM systems. The weighting factors and number of cyclic shifts, on the other hand, should be carefully chosen to guarantee that the elements of the appropriate frequency domain phase rotation vectors are of equal magnitude. A low-complexity expression is chosen from among these options to create the proposed low-complexity scheme, which only requires one IFFT. In comparison to the existing SLM technique, the new SLM scheme achieves equivalent PAPR reduction performance with significantly less computing complexity. MATLAB tool is used for simulating the proposed work

    A Review Paper on PAPR Reduction in OFDM using SLM and Adaptive Clipping

    Get PDF
    Orthogonal Frequency division Multiplexing (OFDM) is an effectual technique of data transmission for high speed communication schemes. However, the main drawback of OFDM system is the high Peak to Average Power Ratio (PAPR) of the communicated signals. OFDM contain of large number of independent subcarriers, as a result of which the amplitude of such a signal can have high peak values. Coding, phase rotation and clipping are between many PAPR reduction schemes that have been proposed to overcome this problem. Here in this paper we survey on two different PAPR reduction methods adaptive clipping and selective mapping (SLM) are used to reduce PAPR. Important reduction in PAPR has been achieved using these techniques
    • …
    corecore