505 research outputs found

    Logical Reduction of Metarules

    Get PDF
    International audienceMany forms of inductive logic programming (ILP) use metarules, second-order Horn clauses, to define the structure of learnable programs and thus the hypothesis space. Deciding which metarules to use for a given learning task is a major open problem and is a trade-off between efficiency and expressivity: the hypothesis space grows given more metarules, so we wish to use fewer metarules, but if we use too few metarules then we lose expressivity. In this paper, we study whether fragments of metarules can be logically reduced to minimal finite subsets. We consider two traditional forms of logical reduction: subsumption and entailment. We also consider a new reduction technique called derivation reduction, which is based on SLD-resolution. We compute reduced sets of metarules for fragments relevant to ILP and theoretically show whether these reduced sets are reductions for more general infinite fragments. We experimentally compare learning with reduced sets of metarules on three domains: Michalski trains, string transformations, and game rules. In general, derivation reduced sets of metarules outperform subsumption and entailment reduced sets, both in terms of predictive accuracies and learning times

    Memoization in Constraint Logic Programming

    Full text link
    This paper shows how to apply memoization (caching of subgoals and associated answer substitutions) in a constraint logic programming setting. The research is is motivated by the desire to apply constraint logic programming (CLP) to problems in natural language processing that involve (constraint) interleaving or coroutining, such as GB and HPSG parsing.Comment: 11 page

    Productive Corecursion in Logic Programming

    Get PDF
    Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property -- of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no figure

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    Structural resolution for abstract compilation of object-oriented languages

    Get PDF
    We propose abstract compilation for precise static type analysis of object-oriented languages based on coinductive logic programming. Source code is translated to a logic program, then type-checking and inference problems amount to queries to be solved with respect to the resulting logic program. We exploit a coinductive semantics to deal with infinite terms and proofs produced by recursive types and methods. Thanks to the recent notion of structural resolution for coinductive logic programming, we are able to infer very precise type information, including a class of irrational recursive types causing non-termination for previously considered coinductive semantics. We also show how to transform logic programs to make them satisfy the preconditions for the operational semantics of structural resolution, and we prove this step does not affect the semantics of the logic program.Comment: In Proceedings CoALP-Ty'16, arXiv:1709.0419
    • …
    corecore