199 research outputs found

    SLA-Based Continuous Security Assurance in Multi-Cloud DevOps

    Get PDF
    Multi-cloud applications, i.e. those that are deployed over multiple independent Cloud providers, pose a number of challenges to the security-aware development and operation. Security assurance in such applications is hard due to the lack of insights of security controls ap- plied by Cloud providers and the need of controlling the security levels of all the components and layers at a time. This paper presents the MUSA approach to Service Level Agreement (SLA)-based continuous security assurance in multi-cloud applications. The paper details the proposed model for capturing the security controls in the o ered application Se- curity SLA and the approach to continuously monitor and asses the controls at operation phase. This new approach enables to easily align development security requirements with controls monitored at operation as well as early react at operation to any possible security incident or SLA violation.The MUSA project leading to this paper has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 644429

    Service Level Agreement-based GDPR Compliance and Security assurance in (multi)Cloud-based systems

    Get PDF
    Compliance with the new European General Data Protection Regulation (Regulation (EU) 2016/679) and security assurance are currently two major challenges of Cloud-based systems. GDPR compliance implies both privacy and security mechanisms definition, enforcement and control, including evidence collection. This paper presents a novel DevOps framework aimed at supporting Cloud consumers in designing, deploying and operating (multi)Cloud systems that include the necessary privacy and security controls for ensuring transparency to end-users, third parties in service provision (if any) and law enforcement authorities. The framework relies on the risk-driven specification at design time of privacy and security level objectives in the system Service Level Agreement (SLA) and in their continuous monitoring and enforcement at runtime.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644429 and No 780351, MUSA project and ENACT project, respectively. We would also like to acknowledge all the members of the MUSA Consortium and ENACT Consortium for their valuable help

    An Integrated Framework for the Methodological Assurance of Security and Privacy in the Development and Operation of MultiCloud Applications

    Get PDF
    x, 169 p.This Thesis studies research questions about how to design multiCloud applications taking into account security and privacy requirements to protect the system from potential risks and about how to decide which security and privacy protections to include in the system. In addition, solutions are needed to overcome the difficulties in assuring security and privacy properties defined at design time still hold all along the system life-cycle, from development to operation.In this Thesis an innovative DevOps integrated methodology and framework are presented, which help to rationalise and systematise security and privacy analyses in multiCloud to enable an informed decision-process for risk-cost balanced selection of the protections of the system components and the protections to request from Cloud Service Providers used. The focus of the work is on the Development phase of the analysis and creation of multiCloud applications.The main contributions of this Thesis for multiCloud applications are four: i) The integrated DevOps methodology for security and privacy assurance; and its integrating parts: ii) a security and privacy requirements modelling language, iii) a continuous risk assessment methodology and its complementary risk-based optimisation of defences, and iv) a Security and Privacy Service Level AgreementComposition method.The integrated DevOps methodology and its integrating Development methods have been validated in the case study of a real multiCloud application in the eHealth domain. The validation confirmed the feasibility and benefits of the solution with regards to the rationalisation and systematisation of security and privacy assurance in multiCloud systems

    Towards Self-Protective Multi-Cloud Applications: MUSA – a Holistic Framework to Support the Security-Intelligent Lifecycle Management of Multi-Cloud Applications

    Get PDF
    The most challenging applications in heterogeneous cloud ecosystems are those that are able to maximise the benefits of the combination of the cloud resources in use: multi-cloud applications. They have to deal with the security of the individual components as well as with the overall application security including the communications and the data flow between the components. In this paper we present a novel approach currently in progress, the MUSA framework. The MUSA framework aims to support the security-intelligent lifecycle management of distributed applications over heterogeneous cloud resources. The framework includes security-by-design mechanisms to allow application self-protection at runtime, as well as methods and tools for the integrated security assurance in both the engineering and operation of multi-cloud applications. The MUSA framework leverages security-by-design, agile and DevOps approaches to enable the security-aware development and operation of multi-cloud applications.European Commission's H202

    Cloud technology options towards Free Flow of Data

    Get PDF
    This whitepaper collects the technology solutions that the projects in the Data Protection, Security and Privacy Cluster propose to address the challenges raised by the working areas of the Free Flow of Data initiative. The document describes the technologies, methodologies, models, and tools researched and developed by the clustered projects mapped to the ten areas of work of the Free Flow of Data initiative. The aim is to facilitate the identification of the state-of-the-art of technology options towards solving the data security and privacy challenges posed by the Free Flow of Data initiative in Europe. The document gives reference to the Cluster, the individual projects and the technologies produced by them

    DECIDE: DevOps for Trusted, Portable and Interoperable Multi-Cloud Applications towards the Digital Single Market

    Get PDF
    The main objective of the DECIDE action is to provide a new generation of multi-cloud service-based software framework, enabling techniques and mechanisms to design, develop, and dynamically deploy multi-cloud aware applications in an ecosystem of reliable, interoperable, and legal compliant cloud services. Three use cases will be conducted to validate the proposed approach.The project leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731533

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts, Challenges and a Reference Framework

    Get PDF
    The current trend of developing highly distributed, context aware, heterogeneous computing intense and data-sensitive applications is changing the boundaries of cloud computing. Encouraged by the growing IoT paradigm and with flexible edge devices available, an ecosystem of a combination of resources, ranging from high density compute and storage to very lightweight embedded computers running on batteries or solar power, is available for DevOps teams from what is known as the Cloud Continuum. In this dynamic context, manageability is key, as well as controlled operations and resources monitoring for handling anomalies. Unfortunately, the operation and management of such heterogeneous computing environments (including edge, cloud and network services) is complex and operators face challenges such as the continuous optimization and autonomous (re-)deployment of context-aware stateless and stateful applications where, however, they must ensure service continuity while anticipating potential failures in the underlying infrastructure. In this paper, we propose a novel CloudOps workflow (extending the traditional DevOps pipeline), proposing techniques and methods for applications’ operators to fully embrace the possibilities of the Cloud Continuum. Our approach will support DevOps teams in the operationalization of the Cloud Continuum. Secondly, we provide an extensive explanation of the scope, possibilities and future of the CloudOps.This research was funded by the European project PIACERE (Horizon 2020 Research and Innovation Programme, under grant agreement No. 101000162)

    Contribución a la estimulación del uso de soluciones Cloud Computing: Diseño de un intermediador de servicios Cloud para fomentar el uso de ecosistemas distribuidos digitales confiables, interoperables y de acuerdo a la legalidad. Aplicación en entornos multi-cloud.

    Get PDF
    184 p.El objetivo del trabajo de investigación presentado en esta tesis es facilitar a los desarrolladores y operadores de aplicaciones desplegadas en múltiples Nubes el descubrimiento y la gestión de los diferentes servicios de Computación, soportando su reutilización y combinación, para generar una red de servicios interoperables, que cumplen con las leyes y cuyos acuerdos de nivel de servicio pueden ser evaluados de manera continua. Una de las contribuciones de esta tesis es el diseño y desarrollo de un bróker de servicios de Computación llamado ACSmI (Advanced Cloud Services meta-Intermediator). ACSmI permite evaluar el cumplimiento de los acuerdos de nivel de servicio incluyendo la legislación. ACSmI también proporciona una capa de abstracción intermedia para los servicios de Computación donde los desarrolladores pueden acceder fácilmente a un catálogo de servicios acreditados y compatibles con los requisitos no funcionales establecidos.Además, este trabajo de investigación propone la caracterización de las aplicaciones nativas multiNube y el concepto de "DevOps extendido" especialmente pensado para este tipo de aplicaciones. El concepto "DevOps extendido" pretende resolver algunos de los problemas actuales del diseño, desarrollo, implementación y adaptación de aplicaciones multiNube, proporcionando un enfoque DevOps novedoso y extendido para la adaptación de las prácticas actuales de DevOps al paradigma multiNube
    • …
    corecore