888 research outputs found

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling

    Full text link
    The dynamic provisioning of virtualized resources offered by cloud computing infrastructures allows applications deployed in a cloud environment to automatically increase and decrease the amount of used resources. This capability is called auto-scaling and its main purpose is to automatically adjust the scale of the system that is running the application to satisfy the varying workload with minimum resource utilization. The need for auto-scaling is particularly important during workload peaks, in which applications may need to scale up to extremely large-scale systems. Both the research community and the main cloud providers have already developed auto-scaling solutions. However, most research solutions are centralized and not suitable for managing large-scale systems, moreover cloud providers' solutions are bound to the limitations of a specific provider in terms of resource prices, availability, reliability, and connectivity. In this paper we propose DEPAS, a decentralized probabilistic auto-scaling algorithm integrated into a P2P architecture that is cloud provider independent, thus allowing the auto-scaling of services over multiple cloud infrastructures at the same time. Our simulations, which are based on real service traces, show that our approach is capable of: (i) keeping the overall utilization of all the instantiated cloud resources in a target range, (ii) maintaining service response times close to the ones obtained using optimal centralized auto-scaling approaches.Comment: Submitted to Springer Computin

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Performance Evaluation Metrics for Cloud, Fog and Edge Computing: A Review, Taxonomy, Benchmarks and Standards for Future Research

    Get PDF
    Optimization is an inseparable part of Cloud computing, particularly with the emergence of Fog and Edge paradigms. Not only these emerging paradigms demand reevaluating cloud-native optimizations and exploring Fog and Edge-based solutions, but also the objectives require significant shift from considering only latency to energy, security, reliability and cost. Hence, it is apparent that optimization objectives have become diverse and lately Internet of Things (IoT)-specific born objectives must come into play. This is critical as incorrect selection of metrics can mislead the developer about the real performance. For instance, a latency-aware auto-scaler must be evaluated through latency-related metrics as response time or tail latency; otherwise the resource manager is not carefully evaluated even if it can reduce the cost. Given such challenges, researchers and developers are struggling to explore and utilize the right metrics to evaluate the performance of optimization techniques such as task scheduling, resource provisioning, resource allocation, resource scheduling and resource execution. This is challenging due to (1) novel and multi-layered computing paradigm, e.g., Cloud, Fog and Edge, (2) IoT applications with different requirements, e.g., latency or privacy, and (3) not having a benchmark and standard for the evaluation metrics. In this paper, by exploring the literature, (1) we present a taxonomy of the various real-world metrics to evaluate the performance of cloud, fog, and edge computing; (2) we survey the literature to recognize common metrics and their applications; and (3) outline open issues for future research. This comprehensive benchmark study can significantly assist developers and researchers to evaluate performance under realistic metrics and standards to ensure their objectives will be achieved in the production environments
    • …
    corecore