95 research outputs found

    A framework for QoS driven user-side cloud service management

    Get PDF
    This thesis presents a comprehensive framework that assists the cloud service user in making cloud service management decisions, such as service selection and migration. The proposed framework utilizes the QoS history of the available services for QoS forecasting and multi-criteria decision making. It then integrates all the inherent necessary processes, such as QoS monitoring, forecasting, service comparison and ranking to recommend the best and optimal decision to the user

    A Survey of Virtual Machine Migration Techniques in Cloud Computing

    Get PDF
    Cloud computing is an emerging computing technology that maintains computational resources on large data centers and accessed through internet, rather than on local computers. VM migration provides the capability to balance the load, system maintenance, etc. Virtualization technology gives power to cloud computing. The virtual machine migration techniques can be divided into two categories that is pre-copy and post-copy approach. The process to move running applications or VMs from one physical machine to another, is known as VM migration. In migration process the processor state, storage, memory and network connection are moved from one host to another.. Two important performance metrics are downtime and total migration time that the users care about most, because these metrics deals with service degradation and the time during which the service is unavailable. This paper focus on the analysis of live VM migration Techniques in cloud computing. Keywords: Cloud Computing, Virtualization, Virtual Machine, Live Virtual Machine Migration.

    A service broker for Intercloud computing

    Get PDF
    This thesis aims at assisting users in finding the most suitable Cloud resources taking into account their functional and non-functional SLA requirements. A key feature of the work is a Cloud service broker acting as mediator between consumers and Clouds. The research involves the implementation and evaluation of two SLA-aware match-making algorithms by use of a simulation environment. The work investigates also the optimal deployment of Multi-Cloud workflows on Intercloud environments

    Ontologies in Cloud Computing - Review and Future Directions

    Get PDF
    Cloud computing as a technology has the capacity to enhance cooperation, scalability, accessibility, and offers discount prospects using improved and effective computing, and this capability helps organizations to stay focused. Ontologies are used to model knowledge. Once knowledge is modeled, knowledge management systems can be used to search, match, visualize knowledge, and also infer new knowledge. Ontologies use semantic analysis to define information within an environment with interconnecting relationships between heterogeneous sets. This paper aims to provide a comprehensive review of the existing literature on ontology in cloud computing and defines the state of the art. We applied the systematic literature review (SLR) approach and identified 400 articles; 58 of the articles were selected after further selection based on set selection criteria, and 35 articles were considered relevant to the study. The study shows that four predominant areas of cloud computing—cloud security, cloud interoperability, cloud resources and service description, and cloud services discovery and selection—have attracted the attention of researchers as dominant areas where cloud ontologies have made great impact. The proposed methods in the literature applied 30 ontologies in the cloud domain, and five of the methods are still practiced in the legacy computing environment. From the analysis, it was found that several challenges exist, including those related to the application of ontologies to enhance business operations in the cloud and multi-cloud. Based on this review, the study summarizes some unresolved challenges and possible future directions for cloud ontology researchers.publishedVersio

    A multi-criteria decision making approach for scaling and placement of virtual network functions

    Get PDF
    This paper investigates the joint scaling and placement problem of network services made up of virtual network functions (VNFs) that can be provided inside a cluster managing multiple points of presence (PoPs). Aiming at increasing the VNF service satisfaction rates and minimizing the deployment cost, we use both transport and cloud-aware VNF scaling as well as multi-attribute decision making (MADM) algorithms for VNF placement inside the cluster. The original joint scaling and placement problem is known to be NP-hard and hence the problem is solved by separating scaling and placement problems and solving them individually. The experiments are done using a dataset containing the information of a deployed digital-twin network service. These experiments show that considering transport and cloud parameters during scaling and placement algorithms perform more efficiently than the only cloud based or transport based scaling followed by placement algorithms. One of the MADM algorithms, Total Order Preference by Similarity to the Ideal Solution (TOPSIS), has shown to yield the lowest deployment cost and highest VNF request satisfaction rates compared to only transport or cloud scaling and other investigated MADM algorithms. Our simulation results indicate that considering both transport and cloud parameters in various availability scenarios of cloud and transport resources has significant potential to provide increased request satisfaction rates when VNF scaling and placement using the TOPSIS scheme is performed.This work was partially funded by EC H2020 5GPPP 5Growth Project (Grant 856709), Spanish MINECO Grant TEC2017-88373-R (5G-REFINE), Generalitat de Catalunya Grant 2017 SGR 1195 and the National Program on Equipment and Scientifc and Technical Infrastructure, EQC2018-005257-P under the European Regional Development Fund (FEDER). We would also like to thank Milan Groshev, Carlos Guimarães for providing dataset for scaling of robot manipulator based digital twin service

    Cloud Technology Selection: A structured framework for decision making

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementThis study aims to get organizations to improve their decision making during the selection of cloud technology process. As the technology evolves alongside an ever-increasing abundance in market offer, it may be challenging to choose the desirable service that encompasses several business approaches. For the purpose of this study to be attained, the reader must first comprehend the definition of Cloud Technology: it is the delivery of IT resources over the Internet, being applications, software, storage, among other services. Furthermore, understanding the current main technologies/architectures and their capabilities/limitations will play an important role in designing and developing the prospected solution. A thoroughly research will be produced to better define the criteria used in the process. Despite the fact that technology is able to be tailored up to a certain level for the organization needs, a higher level of participation will encourage vendors and architecture designers to develop a better knowledge on the companies’ desires, thus delivering more appropriate features to their unique needs
    corecore