4,510 research outputs found

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    SLA Calculus

    Get PDF
    For modeling Service-Oriented Architectures (SOAs) and validating worst-case performance guarantees a deterministic modeling method with efficient analysis is presented. Upper and lower bounds for delay and workload in systems are used to describe performance contracts. The SLA Calculus allows one to combine model descriptions for single systems and to derive bounds for reaction time and capacity of composed systems with analytic means. The intended, but not exclusive modeling domain for SLA Calculus are distributed software systems with reaction time constraints. SOAs are a system design paradigm that encapsulate software functions in service applications. Due to their standardized interfaces and accessibility via networks, large systems can be composed from smaller services and presented as services again. A well-known implementation of the service paradigm are Web Services that allow applications with components connected by the Internet. Own services and those rented from providers can be transparently combined by users. Performance guarantees for SOAs gain importance with more complex systems and applications in business environments When a service is rented by a customer the provider agrees upon a Service Level Agreement (SLA) with conditions concerning interface, pricing and performance. Service reaction time in form of delay is an important part in many SLAs and subject to performance models discussed in this work. With SLAs providers implicate a maximum delay for their products when the customer limits the workload to their systems. Hence customers expect the contracted service provider to deliver the performance figures unless the workload exceeds the SLA. Since contract penalties could apply, providers have a natural interest in dimensioning their service in regard to the SLA. Even for maximum workloads specified in the contracts the worst-case delay has to hold. Moreover, due to the compositional nature of Web Services, customers become providers themselves when they offer their service compositions to others. Again, worst-case performance bounds are of major interest here. Analyzing models of SOAs is an option to plan, dimension and validate service performance. For system modeling and analysis many methods exist. Queueing Systems and simulation are two well-known approaches in computer science. They provide average and thus long-term performance numbers quite easily using, probabilistic workload and service process descriptions. Deriving system behavior in worst-case situations for performance guarantees is elaborative and can be impossible for more complex systems. Receiving delay bounds usable in SLAs for SOAs by model analysis is still a research issue. A promising candidate to model SOA with SLAs is Network Calculus, an analytical method to derive performance bounds for network components. Given deterministic descriptions for arrival to and service in a network node hard bounds for network delay and the required buffer memory in routers are computed. A fine-granular separation between short- and long-term goals is possible. Network Calculus models also feature composition of elements and fast analytical analysis. When applied to SOAs with SLAs the problem arises that SLAs are not suitable as a system description and information source for Network Calculus models. Especially the internal service capacity is not exposed by SLAs, since providers consider them as a business secret. Without service process descriptions Network Calculus models cannot be analyzed. The SLA Calculus is presented as a solution to this problem. As a novel contribution for deterministic model analysis for SOAs, SLA Calculus is an extension to Network Calculus. Instead of service process descriptions, it uses information on latency to characterize a system. Delay of services is not a scalar analysis result anymore, it becomes a process over time that is bound with Network Calculus-style curves, the delay curves. Together with arrival curves the performance contracts in SLAs are formalized by so-called SLA Delay Properties (SDPs) as a description for the service performance in worst-case. Service composition can be modeled by serial and parallel combination of SDPs. The necessary theorems for the resulting worst-case bounds are given and proved. We will present a method to transfer these performance figures to the missing service process description again. Apart from basic theory we will also consider solutions for practical modeling situations. An algorithm to extract arrival and delay curves from measurements, enables the modeler to include already existing systems without given SLAs as model elements. Finally, we will sketch a selection method in form of an optimization problem for services to support the dynamic service selection in SOAs with a Service Broker. SLA Calculus model analysis will deliver deterministic upper and lower bounds for workload capacities and response times. For upper bounds the worst-case is assumed, thus bounds are pessimistic. The advantage of SLA Calculus is the ability to compute these bounds very fast and to give system modelers a quick overview on system characteristics considering extreme situations. In other modeling methods a lengthy transient analysis would be required. The strict perspective towards worst-case brought up another analysis target: Until now, relatively little attention was paid to contract conformance between subsequent services within service compositions. When services offer different workload capacities the arrival rate to the system needs to be adjusted to avoid bottlenecks. Additionally, for service compositions no response time contract can be guaranteed without internal buffering to enforce a common arrival rate. SLA Calculus unveils the necessary buffer delays and is able to bound them

    Using the event calculus for tracking the normative state of contracts

    Get PDF
    In this work, we have been principally concerned with the representation of contracts so that their normative state may be tracked in an automated fashion over their deployment lifetime. The normative state of a contract, at a particular time, is the aggregation of instances of normative relations that hold between contract parties at that time, plus the current values of contract variables. The effects of contract events on the normative state of a contract are specified using an XML formalisation of the Event Calculus, called ecXML. We use an example mail service agreement from the domain of web services to ground the discussion of our work. We give a characterisation of the agreement according to the normative concepts of: obligation, power and permission, and show how the ecXML representation may be used to track the state of the agreement, according to a narrative of contract events. We also give a description of a state tracking architecture, and a contract deployment tool, both of which have been implemented in the course of our work.

    Service discovery and negotiation with COWS

    Get PDF
    To provide formal foundations to current (web) services technologies, we put forward using COWS, a process calculus for specifying, combining and analysing services, as a uniform formalism for modelling all the relevant phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, deployment and execution. In this paper, we show that constraints and operations on them can be smoothly incorporated in COWS, and propose a disciplined way to model multisets of constraints and to manipulate them through appropriate interaction protocols. Therefore, we demonstrate that also QoS requirement specifications and SLA achievements, and the phases of dynamic service discovery and negotiation can be comfortably modelled in COWS. We illustrate our approach through a scenario for a service-based web hosting provider

    Formal certification and compliance for run-time service environments

    Get PDF
    With the increased awareness of security and safety of services in on-demand distributed service provisioning (such as the recent adoption of Cloud infrastructures), certification and compliance checking of services is becoming a key element for service engineering. Existing certification techniques tend to support mainly design-time checking of service properties and tend not to support the run-time monitoring and progressive certification in the service execution environment. In this paper we discuss an approach which provides both design-time and runtime behavioural compliance checking for a services architecture, through enabling a progressive event-driven model-checking technique. Providing an integrated approach to certification and compliance is a challenge however using analysis and monitoring techniques we present such an approach for on-going compliance checking

    A Calculus for Orchestration of Web Services

    Get PDF
    Service-oriented computing, an emerging paradigm for distributed computing based on the use of services, is calling for the development of tools and techniques to build safe and trustworthy systems, and to analyse their behaviour. Therefore, many researchers have proposed to use process calculi, a cornerstone of current foundational research on specification and analysis of concurrent, reactive, and distributed systems. In this paper, we follow this approach and introduce CWS, a process calculus expressly designed for specifying and combining service-oriented applications, while modelling their dynamic behaviour. We show that CWS can model all the phases of the life cycle of service-oriented applications, such as publication, discovery, negotiation, orchestration, deployment, reconfiguration and execution. We illustrate the specification style that CWS supports by means of a large case study from the automotive domain and a number of more specific examples drawn from it
    corecore