2,214 research outputs found

    SLA Automated Negotiation Manager for Computing Services

    Get PDF
    Success in today’s marketing arena can often depend on companies embracing effective new technologies and integrating them into their business model. In the computing service supply industry, Service Level Agreements (SLAs) are commonly prepared and signed agreements between the service provider and its customers. SLAs should match business needs of both sides of the agreement as closely as possible. This paper focuses on at the steps and activities that the service provider can take to facilitate agreement. It proposes an automated way for creating SLA’s from a set of Service Level Objectives (SLOs). The SLA should achieve business goals, including the maximization of customer satisfaction. To automate the preparation of effective SLAs each company should set SLOs that support business needs

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    Autonomous Agents for Business Process Management

    No full text
    Traditional approaches to managing business processes are often inadequate for large-scale organisation-wide, dynamic settings. However, since Internet and Intranet technologies have become widespread, an increasing number of business processes exhibit these properties. Therefore, a new approach is needed. To this end, we describe the motivation, conceptualization, design, and implementation of a novel agent-based business process management system. The key advance of our system is that responsibility for enacting various components of the business process is delegated to a number of autonomous problem solving agents. To enact their role, these agents typically interact and negotiate with other agents in order to coordinate their actions and to buy in the services they require. This approach leads to a system that is significantly more agile and robust than its traditional counterparts. To help demonstrate these benefits, a companion paper describes the application of our system to a real-world problem faced by British Telecom

    End-to-End QoS Support for a Medical Grid Service Infrastructure

    No full text
    Quality of Service support is an important prerequisite for the adoption of Grid technologies for medical applications. The GEMSS Grid infrastructure addressed this issue by offering end-to-end QoS in the form of explicit timeliness guarantees for compute-intensive medical simulation services. Within GEMSS, parallel applications installed on clusters or other HPC hardware may be exposed as QoS-aware Grid services for which clients may dynamically negotiate QoS constraints with respect to response time and price using Service Level Agreements. The GEMSS infrastructure and middleware is based on standard Web services technology and relies on a reservation based approach to QoS coupled with application specific performance models. In this paper we present an overview of the GEMSS infrastructure, describe the available QoS and security mechanisms, and demonstrate the effectiveness of our methods with a Grid-enabled medical imaging service

    Employing Intelligent Agents to Automate SLA Creation

    Get PDF
    Service Level Agreements (SLAs) are commonly prepared and signed agreements that form the contracts between a service provider and its customers, defining the obligations and liabilities of the parties. Naturally, SLAs should reflect the business needs of both customer and supplier. SLAs are usually formed through either the adoption of a boilerplate agreement from the provider, or through a mediation/negotiation process between the parties. With the increasing adoption of software supply being implemented as a network service, such schemes are rigid or slow and costly, This paper proposes a system that the parties can use to facilitate both fast and flexible agreements. It proposes automation of SLA creation from a set of Service Level Objectives (SLOs), making use of software agents and adopting a social order function by incorporating it into the decision process

    Sla Management in a Collaborative Network Of Federated Clouds: The Cloudland

    Get PDF
    Cloud services have always promised to be available, flexible, and speedy. However, not a single Cloud provider can deliver such promises to their distinctly demanding customers. Cloud providers have a constrained geographical presence, and are willing to invest in infrastructure only when it is profitable to them. Cloud federation is a concept that collectively combines segregated Cloud services to create an extended pool of resources for Clouds to competently deliver their promised level of services. This dissertation is concerned with studying the governing aspects related to the federation of Clouds through collaborative networking. The main objective of this dissertation is to define a framework for a Cloud network that considers balancing the trade-offs among customers’ various quality of service (QoS) requirements, as well as providers\u27 resources utilization. We propose a network of federated Clouds, CloudLend, that creates a platform for Cloud providers to collaborate, and for customers to expand their service selections. We also define and specify a service level agreement (SLA) management model in order to govern and administer the relationships established between different Cloud services in CloudLend. We define a multi-level SLA specification model to annotate and describe QoS terms, in addition to a game theory-based automated SLA negotiation model that supports both customers and providers in negotiating SLA terms, and guiding them towards signing a contract. We also define an adaptive agent-based SLA monitoring model which identifies the root causes of SLA violations, and impartially distributes any updates and changes in established SLAs to all relevant entities. Formal verification proved that our proposed framework assures customers with maximum optimized guarantees to their QoS requirements, in addition to supporting Cloud providers to make informed resource utilization decisions. Additionally, simulation results demonstrate the effectiveness of our SLA management model. Our proposed Cloud Lend network and its SLA management model paves the way to resource sharing among different Cloud providers, which allows for the providers’ lock-in constraints to be broken, allowing effortless migration of customers’ applications across different providers whenever is needed

    A Framework for Automatic SLA Creation

    Get PDF
    Negotiation is fundamental to business. Increased automation of business to business or business to customer interaction is demanding efficient but flexible systems that can manage the negotiation process with minimal direct human intervention. Industries that provide online services rely on Service Level Agreements as the basis for their contractual relationship. Here we look at a means for generating these with a negotiating tool (SLA Negotiation Manager) that complies with e-negotiation rules and creates the agreements from existing business objectives
    corecore