2,467 research outputs found

    An efficient fast mode decision algorithm for H.264/AVC intra/inter predictions

    Get PDF
    H.264/AVC is the newest video coding standard, which outperforms the former standards in video coding efficiency in terms of improved video quality and decreased bitrate. Variable block size based mode decision (MD) with rate distortion optimization (RDO) is one of the most impressive new techniques employed in H.264/AVC. However, the improvement on performance is achieved at the expense of significantly increased computational complexity, which is a key challenge for real-time applications. An efficient fast mode decision algorithm is then proposed in this paper. By exploiting the correlation between macroblocks and the statistical characteristics of sub-macroblock in MD, the video encoding time can be reduced 52.19% on average. Furthermore, the motion speed based adjustment scheme was introduced to minimize the degradation of performanc

    An Efficient Mode Decision Algorithm Based on Dynamic Grouping and Adaptive Adjustment for H.264/AVC

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”The rate distortion optimization (RDO) enabled mode decision (MD) is one of the most important techniques introduced by H.264/AVC. By adopting the exhaustive calculation of rate distortion, the optimal MD enhances the video encoding quality. However, the computational complexity is significantly increased, which is a key challenge for real-time and low power consumption applications. This paper presents a new fast MD algorithm for highly efficient H.264/AVC encoder. The proposed algorithm employs a dynamic group of candidate inter/intra modes to reduce the computational cost. In order to minimize the performance loss incurred by improper mode selection for the previously encoded frames, an adaptive adjustment scheme based on the undulation of bitrate and PSNR is suggested. Experimental results show that the proposed algorithm reduces the encoding time by 35% on average, and the loss of PSNR is usually limited in 0.1 dB with less than 1% increase of bitrate

    Real-time complexity constrained encoding

    Get PDF
    Complex software appliances can be deployed on hardware with limited available computational resources. This computational boundary puts an additional constraint on software applications. This can be an issue for real-time applications with a fixed time constraint such as low delay video encoding. In the context of High Efficiency Video Coding (HEVC), a limited number of publications have focused on controlling the complexity of an HEVC video encoder. In this paper, a technique is proposed to control complexity by deciding between 2Nx2N merge mode and full encoding, at different Coding Unit (CU) depths. The technique is demonstrated in two encoders. The results demonstrate fast convergence to a given complexity threshold, and a limited loss in rate-distortion performance (on average 2.84% Bjontegaard delta rate for 40% complexity reduction)

    Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional Neural Networks

    Get PDF
    Advanced video classification systems decode video frames to derive the necessary texture and motion representations for ingestion and analysis by spatio-temporal deep convolutional neural networks (CNNs). However, when considering visual Internet-of-Things applications, surveillance systems and semantic crawlers of large video repositories, the video capture and the CNN-based semantic analysis parts do not tend to be co-located. This necessitates the transport of compressed video over networks and incurs significant overhead in bandwidth and energy consumption, thereby significantly undermining the deployment potential of such systems. In this paper, we investigate the trade-off between the encoding bitrate and the achievable accuracy of CNN-based video classification models that directly ingest AVC/H.264 and HEVC encoded videos. Instead of retaining entire compressed video bitstreams and applying complex optical flow calculations prior to CNN processing, we only retain motion vector and select texture information at significantly-reduced bitrates and apply no additional processing prior to CNN ingestion. Based on three CNN architectures and two action recognition datasets, we achieve 11%-94% saving in bitrate with marginal effect on classification accuracy. A model-based selection between multiple CNNs increases these savings further, to the point where, if up to 7% loss of accuracy can be tolerated, video classification can take place with as little as 3 kbps for the transport of the required compressed video information to the system implementing the CNN models

    Complexity adaptation in H.264/AVC video coder for static cameras

    Get PDF
    H.264/AVC uses variable block size motion estimation (VBSME) to improve coding gain. However, its complexity is significant and fixed regardless of the required quality or of the scene characteristics. In this paper, we propose an adaptive complexity algorithm based on using the Walsh Hadamard Transform (WHT). VBS automatic partition and skip mode detection algorithms also are proposed. Experimental results show that 70% - 5% of the computation of H.264/AVC is required to achieve the same PSNR

    Complexity adaptation in video encoders for power limited platforms

    Get PDF
    With the emergence of video services on power limited platforms, it is necessary to consider both performance-centric and constraint-centric signal processing techniques. Traditionally, video applications have a bandwidth or computational resources constraint or both. The recent H.264/AVC video compression standard offers significantly improved efficiency and flexibility compared to previous standards, which leads to less emphasis on bandwidth. However, its high computational complexity is a problem for codecs running on power limited plat- forms. Therefore, a technique that integrates both complexity and bandwidth issues in a single framework should be considered. In this thesis we investigate complexity adaptation of a video coder which focuses on managing computational complexity and provides significant complexity savings when applied to recent standards. It consists of three sub functions specially designed for reducing complexity and a framework for using these sub functions; Variable Block Size (VBS) partitioning, fast motion estimation, skip macroblock detection, and complexity adaptation framework. Firstly, the VBS partitioning algorithm based on the Walsh Hadamard Transform (WHT) is presented. The key idea is to segment regions of an image as edges or flat regions based on the fact that prediction errors are mainly affected by edges. Secondly, a fast motion estimation algorithm called Fast Walsh Boundary Search (FWBS) is presented on the VBS partitioned images. Its results outperform other commonly used fast algorithms. Thirdly, a skip macroblock detection algorithm is proposed for use prior to motion estimation by estimating the Discrete Cosine Transform (DCT) coefficients after quantisation. A new orthogonal transform called the S-transform is presented for predicting Integer DCT coefficients from Walsh Hadamard Transform coefficients. Complexity saving is achieved by deciding which macroblocks need to be processed and which can be skipped without processing. Simulation results show that the proposed algorithm achieves significant complexity savings with a negligible loss in rate-distortion performance. Finally, a complexity adaptation framework which combines all three techniques mentioned above is proposed for maximizing the perceptual quality of coded video on a complexity constrained platform
    corecore