115 research outputs found

    SIW Multibeam Antenna Array at 30 GHz for 5G Mobile Devices

    Get PDF

    Miniaturized Multibeam Array Antenna Based on E-Plane Butler Matrix for 5G Application

    Full text link
    © 2018 IEEE. A miniaturized multibeam array antenna fed by a compact beam-forming network (BFN) in multi-layer substrate integrated waveguide (SIW) technology is addressed. As the BFN, an E-plane 4 × 4 Butler matrix (BM) is designed. It is stacked with basic components in the vertical direction so that the dimension can be significantly reduced. Furthermore, some modifications of the BM have been made to obtain further miniaturization. The total occupied area of the designed antenna, including the BFN, is merely 3.8 1 × 0.5 1, which provides an attractive alternative for future 5G applications

    Wideband Vertically Polarized Antenna with Endfire Radiation for 5G Mobile Phone Applications

    Get PDF

    Wideband Beam-Switchable 28 GHz Quasi-Yagi Array for Mobile Devices

    Get PDF

    Millimetre-Wave Dual-Polarized Differentially-Fed 2D Multibeam Patch Antenna Array

    Get PDF
    In this paper, a novel millimetre-wave dual-polarized 2D multibeam antenna array incorporating differentially-fed antenna elements is proposed to achieve high cross-polarization discrimination (XPD) when the beams scan to the maximal pointing angles. The antenna element is composed of a SIW cavity with four shorted patches placed inside, and it is differentially excited for dual-polarization by a pair of feeding strips and transverse slots beneath the patches. Differential excitation is realized by a power divider designed on two laminate layers. Two Butler Matrices placed perpendicularly with each other in different laminates are employed to generate four tilted beams with dual-polarization. A 2 × 2 dual-polarized 2D multibeam antenna array working at 28 GHz is designed, fabricated, and measured. The operation bandwidth of the antenna is 26.8 GHz – 29.2 GHz. The improvement in the XPD is experimentally demonstrated by far-field measurement. When the beams scan to 30◦ off the boresight, the measured XPDs are 28 dB at the centre frequency and higher than 25 dB over the operation bandwidth, which confirms that the cross-polarized radiation in the 2D multibeam antenna array is suppressed by using the differential-feeding technique. The measured gain is in the range from 7.6 dBi to 10.5 dBi

    Two dimensional switched beam antenna at 28 GHz for fifth generation wireless system

    Get PDF
    Fifth generation (5G) wireless system is expected to enable new device-to-device (D2D) and machine-to-machine (M2M) applications that will impact both consumers and industry. Moreover, for efficient M2M communication, both one dimensional (1-D) and two dimensional (2-D) beam switching is highly needed for high data-rate wireless radio links. A planar array with 2-D beam switching capabilities is highly desirable in 5G system. This thesis proposes a new technique of achieving simple and cost effective 2-D beam switching array antenna at 28 GHz for 5G wireless system. The technique involves lateral cascading of Butler matrix (BM) beamforming network (BFN). However, designing a planar BM at 28 GHz that will allow K-connector is not a trivial issue because the distances between the ports are X/4 electrical length apart. Nevertheless, two branch line coupler (BLC) with unequal ports separation at 28 GHz on a single substrate are designed and applied to design 1-D switched beam antennas based on BLC and 4 * 4 BM. Then two of these antennas are laterally cascaded to achieve 2-D beam switching antenna. This novel concept is the basis for choosing BM BFN in the design. The proposed 1-D array antennas on BLC and BM have wide measured impedance bandwidth of 18.9% (5.3 GHz) and 21.7% (6.1 GHz) and highest gain of 14.6 dBi and 15.9 dBi, respectively. The 2-D switched beam antenna on cascaded BLC has highest realized gain of 14.9 dB, radiation efficiency of 86%, 86.8%, 85.5%, and 83.4% at ports 1 to 4, respectively. The switching range of from -25o to +18° in the x-z plane and from -18o to 24o in the y-z plane, while the 2-D switched beam antenna based on cascaded 4 * 4 BM has switching range of -41o to 43o in the x-z plane and -43o to 42o in the y-z plane with highest realized gain of 14.4 dBi. The proposed antennas have great potentials for 5G wireless communication system applications

    A Novel Lens Antenna Design Based on a Bed of Nails Metasurface for New Generation Mobile Devices

    Get PDF

    Review of Switched Beamforming Networks for Scannable Antenna Application towards Fifth Generation (5G) Technology

    Get PDF
    The next generation wireless network (5G) addresses the evolution beyond mobile internet to massive Internet-of-Things (IoT) which will take off from 2019/2020 onwards. The essential design features in 5G wireless network system are massive multiple-input and multiple-output (MIMO) and steerable antenna array. The higher capacity, lower power transmission and larger system coverage offered by upcoming 5G technology can be realized using switched-beam antenna such as Butler matrix, Rotman lens, Blass matrix and Nolen matrix. Review of their design features and performance results will be compared in this article. Butler matrix can be the best approach owing to low complexity, orthogonal beams and less components utilization

    Antenna Design for 5G and Beyond

    Get PDF
    With the rapid evolution of the wireless communications, fifth-generation (5G) communication has received much attention from both academia and industry, with many reported efforts and research outputs and significant improvements in different aspects, such as data rate speed and resolution, mobility, latency, etc. In some countries, the commercialization of 5G communication has already started as well as initial research of beyond technologies such as 6G.MIMO technology with multiple antennas is a promising technology to obtain the requirements of 5G/6G communications. It can significantly enhance the system capacity and resist multipath fading, and has become a hot spot in the field of wireless communications. This technology is a key component and probably the most established to truly reach the promised transfer data rates of future communication systems. In MIMO systems, multiple antennas are deployed at both the transmitter and receiver sides. The greater number of antennas can make the system more resistant to intentional jamming and interference. Massive MIMO with an especially high number of antennas can reduce energy consumption by targeting signals to individual users utilizing beamforming.Apart from sub-6 GHz frequency bands, 5G/6G devices are also expected to cover millimeter-wave (mmWave) and terahertz (THz) spectra. However, moving to higher bands will bring new challenges and will certainly require careful consideration of the antenna design for smart devices. Compact antennas arranged as conformal, planar, and linear arrays can be employed at different portions of base stations and user equipment to form phased arrays with high gain and directional radiation beams. The objective of this Special Issue is to cover all aspects of antenna designs used in existing or future wireless communication systems. The aim is to highlight recent advances, current trends, and possible future developments of 5G/6G antennas

    An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and Sub-THz Applications

    Get PDF
    The millimeter-wave (mmWave) and sub-terahertz (sub-THz) bands have received much attention in recent years for wireless communication and high-resolution imaging radar applications. The objective of this paper is to provide an overview of recent developments in the design and technical implementation of GW-based antenna systems and components. This paper begins by comparing the GW-transmission line to other widely used transmission lines for the mmWave and sub-THz bands. Furthermore, the basic operating principle and possible implementation technique of the GW-technology are briefly discussed. In addition, various antennas and passive components have been developed based on the GW-technology. Despite its advantages in controlling electromagnetic wave propagation, it is also widely used for the packaging of electronic components such as transceivers and power amplifiers. This article also provided an overview of the current manufacturing technologies that are commonly used for the fabrication of GW-components. Finally, the practical applications and industry interest in GW technology developments for mmWave and sub-THz applications have been scrutinized.Funding Agencies|European Union - Marie Sklodowska-Curie [766231WAVECOMBEH2020-MSCA-ITN-2017]</p
    corecore