3 research outputs found

    Processing of optic and radar images.Application in satellite remote sensing of snow, ice and glaciers

    Get PDF
    Ce document présente une synthèse de mes activités de recherche depuis la soutenance de ma thèse en 1999. L'activité rapportée ici est celle d'un ingénieur de recherche, et donc s'est déroulée en parallèle d'une activité ``technique'' comprenant des taches d'instrumentation en laboratoire, d'instrumentation de plateformes en montagne, de raids scientifiques sur les calottes polaires, d'élaboration de projets scientifiques, d'organisation d'équipes ou d'ordre administratif. Je suis Ingénieur de recherche CNRS depuis 2004 affecté au laboratoire Gipsa-lab, une unité mixte de recherche du CNRS, de Grenoble-INP, de l'université Joseph Fourier et de l'université Stendhal. Ce laboratoire (d'environ 400 personnes), conventionné avec l'INRIA, l'Observatoire de Grenoble et l'université Pierre Mendès France, est pluridisciplinaire et développe des recherches fondamentales et finalisées sur les signaux et les systèmes complexes.}Lors de la préparation de ma thèse (mi-temps 1995-99) au LGGE, je me suis intéressé au traitement des images de microstructures de la neige, du névé et de la glace. C'est assez naturellement que j'ai rejoint le laboratoire LIS devenu Gipsa-lab pour y développer des activités de traitement des images Radar à Synthèse d'Ouverture (RSO) appliqué aux milieux naturels neige, glace et glaciers. Etant le premier à générer un interférogramme différentiel des glaciers des Alpes, j'ai continué à travailler sur la phase interférométrique pour extraire des informations de déplacement et valider ces méthodes sur le glacier d'Argentière (massif du Mont-Blanc) qui présente l'énorme avantage de se déplacer de quelques centimètres par jour. Ces activités m'ont amené à développer, en collaboration avec les laboratoires LISTIC, LTCI et IETR, des méthodes plus générales pour extraire des informations dans les images RSO.Ma formation initiale en électronique, puis de doctorat en physique m'ont amené à mettre à profit mes connaissances en traitement d'images et des signaux, en électromagnétisme, en calcul numérique, en informatique et en physique de la neige et de la glace pour étudier les problèmes de traitement des images RSO appliqués à la glace, aux glaciers et à la neige

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research

    SIRV-Based High-Resolution PolSAR Image Speckle Suppression via Dual-Domain Filtering

    No full text
    corecore