1,218 research outputs found

    Fourth ERCIM workshop on e-mobility

    Get PDF

    Enabling Layered Video Coding for IMS-Based IPTV Home Services

    Get PDF
    Nowadays IPTV services are gaining attention from both providers and end users. There is a large effort toward the integration of these services into emerging next-generation network architectures. In particular, one of the most relevant solutions is being proposed by ETSI-TISPAN and is based on the IP multimedia subsystem. This article focuses on introducing layered video coding into TISPAN IMS-based IPTV architecture, allowing cost-effective efficient solutions both for residential users and providers (e.g., flexible support of heterogeneous devices, live mosaics, adaptive video quality based on device and/or network capabilities). The advantages of using layered video coding in the TISPAN IPTV solution are analyzed and illustrated with a set of use cases. Furthermore, this solution has been integrated into a multimedia testbed in order to validate the presented proposal

    An open virtual multi-services networking architecture for the future internet

    Get PDF
    © 2015, El Barachi et al.; licensee Springer. Network virtualization is considered as a promising way to overcome the limitations and fight the gradual ossification of the current Internet infrastructure. The network virtualization concept consists in the dynamic creation of several co-existing logical network instances (or virtual networks) over a shared physical network infrastructure. We have previously proposed a service-oriented hierarchical business model for virtual networking environments. This model promotes the idea of network as a service, by considering the functionalities offered by different types of network resources as services of different levels – services that can be dynamically discovered, used, and composed. In this paper, we propose an open, virtual, multi-services networking architecture enabling the realization of our business model. We also demonstrate the operation of our architecture using a virtualized QoS-enabled VoIP scenario. Moreover, virtual routing and control level performance was evaluated using proof-of-concept prototyping. Several important findings were made in the course of this work; one is that service-oriented concepts can be used to build open, flexible, and collaborative virtual networking environments. Another finding is that some of the existing open source virtual routing solutions such as Vyatta are only suitable for building small to medium size virtual networking infrastructures

    An open virtual multi-services networking architecture for the future internet

    Get PDF
    © 2015, El Barachi et al.; licensee Springer. Network virtualization is considered as a promising way to overcome the limitations and fight the gradual ossification of the current Internet infrastructure. The network virtualization concept consists in the dynamic creation of several co-existing logical network instances (or virtual networks) over a shared physical network infrastructure. We have previously proposed a service-oriented hierarchical business model for virtual networking environments. This model promotes the idea of network as a service, by considering the functionalities offered by different types of network resources as services of different levels – services that can be dynamically discovered, used, and composed. In this paper, we propose an open, virtual, multi-services networking architecture enabling the realization of our business model. We also demonstrate the operation of our architecture using a virtualized QoS-enabled VoIP scenario. Moreover, virtual routing and control level performance was evaluated using proof-of-concept prototyping. Several important findings were made in the course of this work; one is that service-oriented concepts can be used to build open, flexible, and collaborative virtual networking environments. Another finding is that some of the existing open source virtual routing solutions such as Vyatta are only suitable for building small to medium size virtual networking infrastructures

    Communication Technologies Support to Railway Infrastructure and Operations

    Get PDF

    Coordinating heterogeneous IoT devices by means of the centralized vision of the SDN controller

    Get PDF
    The IoT (Internet of Things) has become a reality during recent years. The desire of having everything connected to the Internet results in clearly identified benefits that will impact on socio economic development. However, the exponential growth in the number of IoT devices and their heterogeneity open new challenges that must be carefully studied. Coordination among devices to adapt them to their users' context usually requires high volumes of data to be exchanged with the cloud. In order to reduce unnecessary communications and network overhead, this paper proposes a novel network architecture based on the Software-Defined Networking paradigm that allows IoT devices coordinate and adapt them within the scope of a particular context.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Application Layer Architectures for Disaster Response Systems

    Get PDF
    Traditional disaster response methods face several issues such as limited situational awareness, lack of interoperability and reliance on voice-oriented communications. Disaster response systems (DRSs) aim to address these issues and assist responders by providing a wide range of services. Since the network infrastructure in disaster area may become non-operational, mobile ad-hoc networks (MANETs) are the only alternative to provide connectivity and other network services. Because of the dynamic nature of MANETs the applications/services provided by DRSs should be based on distributed architectures. These distributed application/services form overlays on top of MANETs. This thesis aims to improve three main aspect of DRSs: interoperability, automation, and prioritization. Interoperability enables the communication and collaboration between different rescue teams which improve the efficiency of rescue operations and avoid potential interferences between teams. Automation allows responders to focus more on their tasks by minimizing the required human interventions in DRSs. Automation also allows machines to operate in areas where human cannot because of safety issues. Prioritization ensures that emergency services (e.g. firefighter communications) in DRSs have higher priority to receive resources (e.g. network services) than non-emergency services (e.g. new reporters’ communications). Prioritizing vital services in disaster area can save lives. This thesis proposes application layer architectures that enable three important services in DRSs and contribute to the improvement of the three aforementioned aspects of DRSs: overlay interconnection, service discovery and differentiated quality of service (QoS). The overlay interconnection architecture provides a distributed and scalable mechanism to interconnect end-user application overlays and gateway overlays in MANETs. The service discovery architecture is a distributed directory-based service discovery mechanism based on the standard Domain Name System (DNS) protocol. Lastly, a differentiated QoS architecture is presented that provides admission control and policy enforcement functions based on a given prioritization scheme. For each of the provided services, a motivation scenario is presented, requirements are derived and related work is evaluated with respect to these requirements. Furthermore, performance evaluations are provided for each of the proposed architectures. For the overlay interconnection architecture, a prototype is presented along with performance measurements. The results show that our architecture achieves acceptable request-response delays and network load overhead. For the service discovery architecture, extensive simulations have been run to evaluate the performance of our architecture and to compare it with the Internet Engineering Task Force (IETF) directory-less service discovery proposal based on Multicast DNS. The results show that our architecture generates less overall network load and ensures successful discovery with higher probability. Finally, for the differentiated QoS architecture, simulations results show that our architecture not only enables differentiated QoS, it also improves overall QoS in terms of the number of successful overlay flows
    • …
    corecore