293 research outputs found

    Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming

    Full text link
    This paper investigates the extent to which spectrum sharing in mmWave networks with multiple cellular operators is a viable alternative to traditional dedicated spectrum allocation. Specifically, we develop a general mathematical framework by which to characterize the performance gain that can be obtained when spectrum sharing is used, as a function of the underlying beamforming, operator coordination, bandwidth, and infrastructure sharing scenarios. The framework is based on joint beamforming and cell association optimization, with the objective of maximizing the long-term throughput of the users. Our asymptotic and non-asymptotic performance analyses reveal five key points: (1) spectrum sharing with light on-demand intra- and inter-operator coordination is feasible, especially at higher mmWave frequencies (for example, 73 GHz), (2) directional communications at the user equipment substantially alleviate the potential disadvantages of spectrum sharing (such as higher multiuser interference), (3) large numbers of antenna elements can reduce the need for coordination and simplify the implementation of spectrum sharing, (4) while inter-operator coordination can be neglected in the large-antenna regime, intra-operator coordination can still bring gains by balancing the network load, and (5) critical control signals among base stations, operators, and user equipment should be protected from the adverse effects of spectrum sharing, for example by means of exclusive resource allocation. The results of this paper, and their extensions obtained by relaxing some ideal assumptions, can provide important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing and Aggregation for Future Wireless Network

    Adaptive antennas at the mobile and base stations in an OFDM/TDMA system

    Get PDF
    In recent years, several smart antenna systems have been proposed and demonstrated at the base station (BS) of wire-less communications systems, and these have shown that significant system performance improvement is possible. In this paper, we consider the use of adaptive antennas at the BS and mobile stations (MS), operating jointly, in combination with orthogonal frequency-division multiplexing. The advantages of the proposed system includes reductions in average error probability and increases in capacity compared to conventional systems. Multiuser access, in space, time, and through subcarriers, is also possible and expressions for the exact joint optimal antenna weights at the BS and MS under cochannel interference conditions for fading channels are derived. To demonstrate the potential of our proposed system, analytical along with Monte Carlo simulation results are provided

    Capacity Optimization of Spatial Preemptive Scheduling for Joint URLLC-eMBB Traffic in 5G New Radio

    Get PDF

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Radio Resource Management for Uplink Grant-Free Ultra-Reliable Low-Latency Communications

    Get PDF
    • …
    corecore