1,015 research outputs found

    Distributed Multicell Beamforming Design Approaching Pareto Boundary with Max-Min Fairness

    Full text link
    This paper addresses coordinated downlink beamforming optimization in multicell time-division duplex (TDD) systems where a small number of parameters are exchanged between cells but with no data sharing. With the goal to reach the point on the Pareto boundary with max-min rate fairness, we first develop a two-step centralized optimization algorithm to design the joint beamforming vectors. This algorithm can achieve a further sum-rate improvement over the max-min optimal performance, and is shown to guarantee max-min Pareto optimality for scenarios with two base stations (BSs) each serving a single user. To realize a distributed solution with limited intercell communication, we then propose an iterative algorithm by exploiting an approximate uplink-downlink duality, in which only a small number of positive scalars are shared between cells in each iteration. Simulation results show that the proposed distributed solution achieves a fairness rate performance close to the centralized algorithm while it has a better sum-rate performance, and demonstrates a better tradeoff between sum-rate and fairness than the Nash Bargaining solution especially at high signal-to-noise ratio.Comment: 8 figures. To Appear in IEEE Trans. Wireless Communications, 201

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Mathematical optimization and game theoretic techniques for multicell beamforming

    Get PDF
    The main challenge in mobile wireless communications is the incompatibility between limited wireless resources and increasing demand on wireless services. The employment of frequency reuse technique has effectively increased the capacity of the network and improved the efficiency of frequency utilization. However, with the emergence of smart phones and even more data hungry applications such as interactive multimedia, higher data rate is demanded by mobile users. On the other hand, the interference induced by spectrum sharing arrangement has severely degraded the quality of service for users and restricted further reduction of cell size and enhancement of frequency reuse factor. Beamforming technique has great potential to improve the network performance. With the employment of multiple antennas, a base station is capable of directionally transmitting signals to desired users through narrow beams rather than omnidirectional waves. This will result users suffer less interference from the signals transmitted to other co-channel users. In addition, with the combination of beamforming technique and appropriate power control schemes, the resources of the wireless networks can be used more efficiently. In this thesis, mathematical optimization and game theoretic techniques have been exploited for beamforming designs within the context of multicell wireless networks. Both the coordinated beamforming and the coalitional game theoretic based beamforming techniques have been proposed. Initially, coordinated multicell beamforming algorithms for mixed design criteria have been developed, in which some users are allowed to achieve target signal-to-interference- plus-noise ratios (SINRs) while the SINRs of rest of the users in all cells will be balanced to a maximum achievable SINR. An SINR balancing based coordinated multicell beamforming algorithm has then been proposed which is capable of balancing users in different cells to different SINR levels. Finally, a coalitional game based multicell beamforming has been considered, in which the proposed coalition formation algorithm can reach to stable coalition structures. The performances of all the proposed algorithms have been demonstrated using MATLAB based simulations

    Optimization techniques for reliable data communication in multi-antenna wireless systems

    Get PDF
    This thesis looks at new methods of achieving reliable data communication in wireless communication systems using different antenna transmission optimization methods. In particular, the problems of exploitation of MIMO communication channel diversity, secure downlink beamforming techniques, adaptive beamforming techniques, resource allocation methods, simultaneous power and information transfer and energy harvesting within the context of multi-antenna wireless systems are addressed
    • …
    corecore