2,333 research outputs found

    Optimal Posted Prices for Online Cloud Resource Allocation

    Full text link
    We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either takes the current prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions based on the current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations, and prove worst-case competitive ratios of the pricing functions in terms of social welfare. In the basic case of a single-type, non-recycled resource (i.e., allocated resources are not later released for reuse), we prove that our pricing function design is optimal, in that any other pricing function can only lead to a worse competitive ratio. Insights obtained from the basic cases are then used to generalize the pricing functions to more realistic cloud systems with multiple types of resources, where a job occupies allocated resources for a number of time slots till completion, upon which time the resources are returned back to the cloud resource pool

    Redundancy Scheduling with Locally Stable Compatibility Graphs

    Full text link
    Redundancy scheduling is a popular concept to improve performance in parallel-server systems. In the baseline scenario any job can be handled equally well by any server, and is replicated to a fixed number of servers selected uniformly at random. Quite often however, there may be heterogeneity in job characteristics or server capabilities, and jobs can only be replicated to specific servers because of affinity relations or compatibility constraints. In order to capture such situations, we consider a scenario where jobs of various types are replicated to different subsets of servers as prescribed by a general compatibility graph. We exploit a product-form stationary distribution and weak local stability conditions to establish a state space collapse in heavy traffic. In this limiting regime, the parallel-server system with graph-based redundancy scheduling operates as a multi-class single-server system, achieving full resource pooling and exhibiting strong insensitivity to the underlying compatibility constraints.Comment: 28 pages, 4 figure
    • …
    corecore