4,343 research outputs found

    Query Expansion with Locally-Trained Word Embeddings

    Full text link
    Continuous space word embeddings have received a great deal of attention in the natural language processing and machine learning communities for their ability to model term similarity and other relationships. We study the use of term relatedness in the context of query expansion for ad hoc information retrieval. We demonstrate that word embeddings such as word2vec and GloVe, when trained globally, underperform corpus and query specific embeddings for retrieval tasks. These results suggest that other tasks benefiting from global embeddings may also benefit from local embeddings

    Technology Assisted Reviews: Finding the Last Few Relevant Documents by Asking Yes/No Questions to Reviewers

    Get PDF
    The goal of a technology-assisted review is to achieve high recall with low human effort. Continuous active learning algorithms have demonstrated good performance in locating the majority of relevant documents in a collection, however their performance is reaching a plateau when 80\%-90\% of them has been found. Finding the last few relevant documents typically requires exhaustively reviewing the collection. In this paper, we propose a novel method to identify these last few, but significant, documents efficiently. Our method makes the hypothesis that entities carry vital information in documents, and that reviewers can answer questions about the presence or absence of an entity in the missing relevance documents. Based on this we devise a sequential Bayesian search method that selects the optimal sequence of questions to ask. The experimental results show that our proposed method can greatly improve performance requiring less reviewing effort.Comment: This paper is accepted by SIGIR 201

    Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-shot Learning

    Full text link
    While billions of non-English speaking users rely on search engines every day, the problem of ad-hoc information retrieval is rarely studied for non-English languages. This is primarily due to a lack of data set that are suitable to train ranking algorithms. In this paper, we tackle the lack of data by leveraging pre-trained multilingual language models to transfer a retrieval system trained on English collections to non-English queries and documents. Our model is evaluated in a zero-shot setting, meaning that we use them to predict relevance scores for query-document pairs in languages never seen during training. Our results show that the proposed approach can significantly outperform unsupervised retrieval techniques for Arabic, Chinese Mandarin, and Spanish. We also show that augmenting the English training collection with some examples from the target language can sometimes improve performance.Comment: ECIR 2020 (short

    Deriving query suggestions for site search

    Get PDF
    Modern search engines have been moving away from simplistic interfaces that aimed at satisfying a user's need with a single-shot query. Interactive features are now integral parts of web search engines. However, generating good query modification suggestions remains a challenging issue. Query log analysis is one of the major strands of work in this direction. Although much research has been performed on query logs collected on the web as a whole, query log analysis to enhance search on smaller and more focused collections has attracted less attention, despite its increasing practical importance. In this article, we report on a systematic study of different query modification methods applied to a substantial query log collected on a local website that already uses an interactive search engine. We conducted experiments in which we asked users to assess the relevance of potential query modification suggestions that have been constructed using a range of log analysis methods and different baseline approaches. The experimental results demonstrate the usefulness of log analysis to extract query modification suggestions. Furthermore, our experiments demonstrate that a more fine-grained approach than grouping search requests into sessions allows for extraction of better refinement terms from query log files. © 2013 ASIS&T

    Modeling Temporal Evidence from External Collections

    Full text link
    Newsworthy events are broadcast through multiple mediums and prompt the crowds to produce comments on social media. In this paper, we propose to leverage on this behavioral dynamics to estimate the most relevant time periods for an event (i.e., query). Recent advances have shown how to improve the estimation of the temporal relevance of such topics. In this approach, we build on two major novelties. First, we mine temporal evidences from hundreds of external sources into topic-based external collections to improve the robustness of the detection of relevant time periods. Second, we propose a formal retrieval model that generalizes the use of the temporal dimension across different aspects of the retrieval process. In particular, we show that temporal evidence of external collections can be used to (i) infer a topic's temporal relevance, (ii) select the query expansion terms, and (iii) re-rank the final results for improved precision. Experiments with TREC Microblog collections show that the proposed time-aware retrieval model makes an effective and extensive use of the temporal dimension to improve search results over the most recent temporal models. Interestingly, we observe a strong correlation between precision and the temporal distribution of retrieved and relevant documents.Comment: To appear in WSDM 201
    corecore