1,457 research outputs found

    Video Stabilization Using SIFT Features, Fuzzy Clustering, and Kalman Filtering

    Get PDF
    Video stabilization removes unwanted motion from video sequences, often caused by vibrations or other instabilities. This improves video viewability and can aid in detection and tracking in computer vision algorithms. We have developed a digital video stabilization process using scale-invariant feature transform (SIFT) features for tracking motion between frames. These features provide information about location and orientation in each frame. The orientation information is generally not available with other features, so we employ this knowledge directly in motion estimation. We use a fuzzy clustering scheme to separate the SIFT features representing camera motion from those representing the motion of moving objects in the scene. Each frame\u27s translation and rotation is accumulated over time, and a Kalman filter is applied to estimate the desired motion. We provide experimental results from several video sequences using peak signal-to-noise ratio (PSNR) and qualitative analysis to demonstrate the results of each design decision we made in the development of this video stabilization method

    Automatic Feature-Based Stabilization of Video with Intentional Motion through a Particle Filter

    Get PDF
    Video sequences acquired by a camera mounted on a hand held device or a mobile platform are affected by unwanted shakes and jitters. In this situation, the performance of video applications, such us motion segmentation and tracking, might dramatically be decreased. Several digital video stabilization approaches have been proposed to overcome this problem. However, they are mainly based on motion estimation techniques that are prone to errors, and thus affecting the stabilization performance. On the other hand, these techniques can only obtain a successfully stabilization if the intentional camera motion is smooth, since they incorrectly filter abrupt changes in the intentional motion. In this paper a novel video stabilization technique that overcomes the aforementioned problems is presented. The motion is estimated by means of a sophisticated feature-based technique that is robust to errors, which could bias the estimation. The unwanted camera motion is filtered, while the intentional motion is successfully preserved thanks to a Particle Filter framework that is able to deal with abrupt changes in the intentional motion. The obtained results confirm the effectiveness of the proposed algorith

    Automated Top View Registration of Broadcast Football Videos

    Full text link
    In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014

    Real-time model-based video stabilization for microaerial vehicles

    Get PDF
    The emerging branch of micro aerial vehicles (MAVs) has attracted a great interest for their indoor navigation capabilities, but they require a high quality video for tele-operated or autonomous tasks. A common problem of on-board video quality is the effect of undesired movements, so different approaches solve it with both mechanical stabilizers or video stabilizer software. Very few video stabilizer algorithms in the literature can be applied in real-time but they do not discriminate at all between intentional movements of the tele-operator and undesired ones. In this paper, a novel technique is introduced for real-time video stabilization with low computational cost, without generating false movements or decreasing the performance of the stabilized video sequence. Our proposal uses a combination of geometric transformations and outliers rejection to obtain a robust inter-frame motion estimation, and a Kalman filter based on an ANN learned model of the MAV that includes the control action for motion intention estimation.Peer ReviewedPostprint (author's final draft

    Video Logo Retrieval based on local Features

    Full text link
    Estimation of the frequency and duration of logos in videos is important and challenging in the advertisement industry as a way of estimating the impact of ad purchases. Since logos occupy only a small area in the videos, the popular methods of image retrieval could fail. This paper develops an algorithm called Video Logo Retrieval (VLR), which is an image-to-video retrieval algorithm based on the spatial distribution of local image descriptors that measure the distance between the query image (the logo) and a collection of video images. VLR uses local features to overcome the weakness of global feature-based models such as convolutional neural networks (CNN). Meanwhile, VLR is flexible and does not require training after setting some hyper-parameters. The performance of VLR is evaluated on two challenging open benchmark tasks (SoccerNet and Standford I2V), and compared with other state-of-the-art logo retrieval or detection algorithms. Overall, VLR shows significantly higher accuracy compared with the existing methods.Comment: Accepted by ICIP 20. Contact author: Bochen Guan ([email protected]

    A robust and efficient video representation for action recognition

    Get PDF
    This paper introduces a state-of-the-art video representation and applies it to efficient action recognition and detection. We first propose to improve the popular dense trajectory features by explicit camera motion estimation. More specifically, we extract feature point matches between frames using SURF descriptors and dense optical flow. The matches are used to estimate a homography with RANSAC. To improve the robustness of homography estimation, a human detector is employed to remove outlier matches from the human body as human motion is not constrained by the camera. Trajectories consistent with the homography are considered as due to camera motion, and thus removed. We also use the homography to cancel out camera motion from the optical flow. This results in significant improvement on motion-based HOF and MBH descriptors. We further explore the recent Fisher vector as an alternative feature encoding approach to the standard bag-of-words histogram, and consider different ways to include spatial layout information in these encodings. We present a large and varied set of evaluations, considering (i) classification of short basic actions on six datasets, (ii) localization of such actions in feature-length movies, and (iii) large-scale recognition of complex events. We find that our improved trajectory features significantly outperform previous dense trajectories, and that Fisher vectors are superior to bag-of-words encodings for video recognition tasks. In all three tasks, we show substantial improvements over the state-of-the-art results

    Video alignment to a common reference

    Get PDF
    2015 Spring.Includes bibliographical references.Handheld videos often include unintentional motion (jitter) and intentional motion (pan and/or zoom). Human viewers prefer to see jitter removed, creating a smoothly moving camera. For video analysis, in contrast, aligning to a fixed stable background is sometimes preferable. This paper presents an algorithm that removes both forms of motion using a novel and efficient way of tracking background points while ignoring moving foreground points. The approach is related to image mosaicing, but the result is a video rather than an enlarged still image. It is also related to multiple object tracking approaches, but simpler since moving objects need not be explicitly tracked. The algorithm presented takes as input a video and returns one or several stabilized videos. Videos are broken into parts when the algorithm detects background change and it becomes necessary to fix upon a new background. We present two techniques in this thesis. One technique stabilizes the video with respect to the first available frame. Another technique stabilizes the videos with respect to a best frame. Our approach assumes the person holding the camera is standing in one place and that objects in motion do not dominate the image. Our algorithm performs better than previously published approaches when compared on 1,401 handheld videos from the recently released Point-and-Shoot Face Recognition Challenge (PASC)

    Hybrid Video Stabilization for Mobile Vehicle Detection on SURF in Aerial Surveillance

    Get PDF
    Detection of moving vehicles in aerial video sequences is of great importance with many promising applications in surveillance, intelligence transportation, or public service applications such as emergency evacuation and policy security. However, vehicle detection is a challenging task due to global camera motion, low resolution of vehicles, and low contrast between vehicles and background. In this paper, we present a hybrid method to efficiently detect moving vehicle in aerial videos. Firstly, local feature extraction and matching were performed to estimate the global motion. It was demonstrated that the Speeded Up Robust Feature (SURF) key points were more suitable for the stabilization task. Then, a list of dynamic pixels was obtained and grouped for different moving vehicles by comparing the different optical flow normal. To enhance the precision of detection, some preprocessing methods were applied to the surveillance system, such as road extraction and other features. A quantitative evaluation on real video sequences indicated that the proposed method improved the detection performance significantly

    Obstacle avoidance and distance measurement for unmanned aerial vehicles using monocular vision

    Get PDF
    Unmanned Aerial Vehicles or commonly known as drones are better suited for "dull, dirty, or dangerous" missions than manned aircraft. The drone can be either remotely controlled or it can travel as per predefined path using complex automation algorithm built during its development. In general, Unmanned Aerial Vehicle (UAV) is the combination of Drone in the air and control system on the ground. Design of an UAV means integrating hardware, software, sensors, actuators, communication systems and payloads into a single unit for the application involved. To make it completely autonomous, the most challenging problem faced by UAVs is obstacle avoidance. In this paper, a novel method to detect frontal obstacles using monocular camera is proposed. Computer Vision algorithms like Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature (SURF) are used to detect frontal obstacles and then distance of the obstacle from camera is calculated. To meet the defined objectives, designed system is tested with self-developed videos which are captured by DJI Phantom 4 pro
    corecore