188 research outputs found

    Who watches the watchers: Validating the ProB Validation Tool

    Full text link
    Over the years, ProB has moved from a tool that complemented proving, to a development environment that is now sometimes used instead of proving for applications, such as exhaustive model checking or data validation. This has led to much more stringent requirements on the integrity of ProB. In this paper we present a summary of our validation efforts for ProB, in particular within the context of the norm EN 50128 and safety critical applications in the railway domain.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Theory, Implementation and Experiments

    Get PDF
    We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state of the art abductive systems and answer set solvers and showing how to use it to program some applications. (To appear in Theory and Practice of Logic Programming - TPLP)

    SUNNY-CP and the MiniZinc Challenge

    Get PDF
    In Constraint Programming (CP) a portfolio solver combines a variety of different constraint solvers for solving a given problem. This fairly recent approach enables to significantly boost the performance of single solvers, especially when multicore architectures are exploited. In this work we give a brief overview of the portfolio solver sunny-cp, and we discuss its performance in the MiniZinc Challenge---the annual international competition for CP solvers---where it won two gold medals in 2015 and 2016. Under consideration in Theory and Practice of Logic Programming (TPLP)Comment: Under consideration in Theory and Practice of Logic Programming (TPLP

    The &-prolog system: Exploiting independent and-parallelism

    Get PDF
    The &-Prolog system, a practical implementation of a parallel execution niodel for Prolog exploiting strict and non-strict independent and-parallelism, is described. Both automatic and manual parallelization of programs is supported. This description includes a summary of the system's language and architecture, some details of its execution model (based on the RAP-WAM model), and data on its performance on sequential workstations and shared memory multiprocessors, which is compared to that of current Prolog systems. The results to date show significant speed advantages over state-of-the-art sequential systems

    Description and Optimization of Abstract Machines in a Dialect of Prolog

    Full text link
    In order to achieve competitive performance, abstract machines for Prolog and related languages end up being large and intricate, and incorporate sophisticated optimizations, both at the design and at the implementation levels. At the same time, efficiency considerations make it necessary to use low-level languages in their implementation. This makes them laborious to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and ancillary code) in a higher-level language can help tame this inherent complexity. We show how the semantics of most basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog, the abstract machine description can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-crafted emulators.Comment: 56 pages, 46 figures, 5 tables, To appear in Theory and Practice of Logic Programming (TPLP
    • …
    corecore