3 research outputs found

    Proof of witness presence: Blockchain consensus for augmented democracy in smart cities

    Get PDF
    Smart Cities evolve into complex and pervasive urban environments with a citizens’ mandate to meet sustainable development goals. Repositioning democratic values of citizens’ choices in these complex ecosystems has turned out to be imperative in an era of social media filter bubbles, fake news and opportunities for manipulating electoral results with such means. This paper introduces a new paradigm of augmented democracy that promises actively engaging citizens in a more informed decision-making augmented into public urban space. The proposed concept is inspired by a digital revive of the Ancient Agora of Athens, an arena of public discourse, a Polis where citizens assemble to actively deliberate and collectively decide about public matters. The core contribution of the proposed paradigm is the concept of proving witness presence: making decision-making subject of providing secure evidence and testifying for choices made in the physical space. This paper shows how the challenge of proving witness presence can be tackled with blockchain consensus to empower citizens’ trust and overcome security vulnerabilities of GPS localization. Moreover, a novel platform for collective decision-making and crowd-sensing in urban space is introduced: Smart Agora. It is shown how real-time collective measurements over citizens’ choices can be made in a fully decentralized and privacy-preserving way. Witness presence is tested by deploying a decentralized system for crowd-sensing the sustainable use of transport means. Furthermore, witness presence of cycling risk is validated using official accident data from public authorities, which are compared against wisdom of the crowd. The paramount role of dynamic consensus, self-governance and ethically aligned artificial intelligence in the augmented democracy paradigm is outlined

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore