192 research outputs found

    Improved frequency domain decomposition and stochastic subspace identification algorithms for operational modal analysis

    Get PDF
    The accuracy of the estimated modal damping ratios in operational modal analysis (OMA) remains an open issue and is often characterized by a large error. The modal damping ratio is considered to be a good practical parameter for structural damage detection due to its sensitivity and sufficient responsiveness to damage compared to natural frequency and mode shape. Therefore, an accurate estimate of the modal damping ratio will assist in developing an effective modal-based structural damage detection approach. The objective of this research focuses on improvements of frequency domain decomposition (FDD) and stochastic subspace identification (SSI) algorithms, particularly in estimating modal damping ratio. These methods have gained a lot of attention and interest compared to other OMA methods due to their ability in estimating modal parameters. However, FDD has a problem dealing with high damping levels, while SSI has difficulty in handling harmonic components. This will cause a large error in estimating the modal damping ratio. Difficulties also arise for automation of SSI as several predefined set parameters are compulsory at start-up for each analysis. This study introduces an iterative loop of advanced optimization to enhance the capabilities of classical FDD algorithm by optimizing the value of the modal assurance criterion (MAC) index and the selection of the correct time window on the auto-correlation function that represents the most challenging part of the algorithms. This study also presents the development of the SSI framework in automated OMA and harmonic removal method using image-based feature extraction along with the application of empirical mode decomposition. The implementation of image-based feature extraction can be used for clustering and classification of harmonic components from structural poles as well as to identify modal parameters by neglecting any calibration or user-defined parameter at start-up. The proposed approach is assessed through experimental and numerical simulation analysis. Based on the numerical simulation results, the proposed optimized FDD can estimate modal damping ratio with high accuracy and consistency by showing average percentage deviation (error) below 5.50% compared to classical FDD and benchmark approach, which is a refined FDD. Errors in classical FDD can reach an average of up to 15%, whereas for refined FDD the average is around 10%. Meanwhile, the results of the proposed approach in experimental verification show a reasonable average percentage deviation of about 5.75%, while the classical FDD algorithm is overestimated which averages about 29% in all cases. For the proposed automation of SSI, the estimated results of modal damping ratio in the numerical simulation are below 2.5% of the average error compared to other SSI methods which on average exceed 3.2%. For experimental verification, the results of the proposed approach indicate very satisfactory agreement by showing average deviation percentage below 4.20% compared to other SSI methods which on average exceeds 14%. Furthermore, the results of the proposed automated harmonic removal in SSI framework for estimating modal damping ratio using existing online experimental data sets demonstrate very high accuracy and consistent results after removing harmonic components, showing an average deviation percentage of below 7.22% compared to orthogonal projection and smoothing technique based on linear interpolation approaches where the average deviation percentage exceeds 9%

    Integrated Geomechanical Characterization of Anisotropic Gas Shales: Field Appraisal, Laboratory Testing, Viscoelastic Modelling,and Hydraulic Fracture Simulation

    Get PDF
    This research provides a multiscale geomechanical characterization workflow for ultra-tight and anisotropic Goldwyer gas shales by integrating field appraisal, laboratory deformation and ultrasonic testing, viscoelastic modelling, and hydraulic fracture simulation. The outcome of this work addresses few of the practical challenges in unconventional reservoirs including but not limited to (i) microstructure & compositional control on rock mechanical properties, (ii) robust estimation of elastic anisotropy, (iii) viscous stress relaxation to predict the least principal stress Shmin at depth from creep, (iv) influence of specific surface area on creep, and (v) impact of stress layering on hydraulic fracturing design

    Assessing the accuracy of fault interpretation using machine-learning techniques when risking faults for CO2 storage site assessment

    Get PDF
    Generating an accurate model of the subsurface for the purpose of assessing the feasibility of a CO2 storage site is crucial. In particular, how faults are interpreted is likely to influence the predicted capacity and integrity of the reservoir; whether this is through identifying high-risk areas along the fault, where fluid is likely to flow across the fault, or by assessing the reactivation potential of the fault with increased pressure, causing fluid to flow up the fault. New technologies allow users to interpret faults effortlessly, and in much quicker time, using methods such as deep learning (DL). These DL techniques use knowledge from neural networks to allow end users to compute areas where faults are likely to occur. Although these new technologies may be attractive due to reduced interpretation time, it is important to understand the inherent uncertainties in their ability to predict accurate fault geometries. Here, we compare DL fault interpretation versus manual fault interpretation, and we can see distinct differences to those faults where significant ambiguity exists due to poor seismic resolution at the fault; we observe an increased irregularity when DL methods are used over conventional manual interpretation. This can result in significant differences between the resulting analyses, such as fault reactivation potential. Conversely, we observe that well-imaged faults indicate a close similarity between the resulting fault surfaces when DL and manual fault interpretation methods are used; hence, we also observe a close similarity between any attributes and fault analyses made. </jats:p

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Forecasting CO2 Sequestration with Enhanced Oil Recovery

    Get PDF
    The aim of carbon capture, utilization, and storage (CCUS) is to reduce the amount of CO2 released into the atmosphere and to mitigate its effects on climate change. Over the years, naturally occurring CO2 sources have been utilized in enhanced oil recovery (EOR) projects in the United States. This has presented an opportunity to supplement and gradually replace the high demand for natural CO2 sources with anthropogenic sources. There also exist incentives for operators to become involved in the storage of anthropogenic CO2 within partially depleted reservoirs, in addition to the incremental production oil revenues. These incentives include a wider availability of anthropogenic sources, the reduction of emissions to meet regulatory requirements, tax incentives in some jurisdictions, and favorable public relations. The United States Department of Energy has sponsored several Regional Carbon Sequestration Partnerships (RCSPs) through its Carbon Storage program which have conducted field demonstrations for both EOR and saline aquifer storage. Various research efforts have been made in the area of reservoir characterization, monitoring, verification and accounting, simulation, and risk assessment to ascertain long-term storage potential within the subject storage complex. This book is a collection of lessons learned through the RCSP program within the Southwest Region of the United States. The scope of the book includes site characterization, storage modeling, monitoring verification reporting (MRV), risk assessment and international case studies

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF
    • …
    corecore