7 research outputs found

    FURISC: FHE Encrypted URISC Design

    Get PDF
    This paper proposes design of a Fully Homomorphic Ultimate RISC (FURISC) based processor. The FURISC architecture supports arbitrary operations on data encrypted with Fully Homomorphic Encryption (FHE) and allows the execution of encrypted programs stored in processors with encrypted memory addresses. The FURISC architecture is designed based on fully homomorphic single RISC instructions like {\em Subtract Branch if Negative} (SBN) and {\em MOVE}. This paper explains how the use of FHE for designing the ultimate RISC processor is better in terms of security compared to previously proposed somewhat homomorphic encryption (SHE) based processor. The absence of randomization in SHE can lead to Chosen Plaintext Attacks (CPA) which is alleviated by the use of the FHE based Ultimate RISC instruction. Furthermore, the use of FURISC helps to develop fully homomorphic applications by tackling the {\em termination} problem, which is a major obstacle for FHE processor design. The paper compares the MOVE based FHE RISC processor with the SBN alternative, and shows that the later is more efficient in terms of number of instructions and time required for the execution of a program. Finally, an SBN based FURISC processor simulator has been designed to demonstrate that various algorithms can indeed be executed on data encrypted with FHE, providing a solution to the termination problem for FHE based processors and the CPA insecurity of SHE processors simultaneously

    Permuted Puzzles and Cryptographic Hardness

    Get PDF
    A permuted puzzle problem is defined by a pair of distributions D0,D1D_0,D_1 over SnS^n. The problem is to distinguish samples from D0,D1D_0,D_1, where the symbols of each sample are permuted by a single secret permutation pp of [n][n]. The conjectured hardness of specific instances of permuted puzzle problems was recently used to obtain the first candidate constructions of Doubly Efficient Private Information Retrieval (DE-PIR) (Boyle et al. & Canetti et al., TCC\u2717). Roughly, in these works the distributions D0,D1D_0,D_1 over FnF^n are evaluations of either a moderately low-degree polynomial or a random function. This new conjecture seems to be quite powerful, and is the foundation for the first DE-PIR candidates, almost two decades after the question was first posed by Beimel et al. (CRYPTO\u2700). While permuted puzzles are a natural and general class of problems, their hardness is still poorly understood. We initiate a formal investigation of the cryptographic hardness of permuted puzzle problems. Our contributions lie in three main directions: 1. Rigorous formalization. We formalize a notion of permuted puzzle distinguishing problems, extending and generalizing the proposed permuted puzzle framework of Boyle et al. (TCC\u2717). 2. Identifying hard permuted puzzles. We identify natural examples in which a one-time permutation provably creates cryptographic hardness, based on ``standard\u27\u27 assumptions. In these examples, the original distributions D0,D1D_0,D_1 are easily distinguishable, but the permuted puzzle distinguishing problem is computationally hard. We provide such constructions in the random oracle model, and in the plain model under the Decisional Diffie-Hellman (DDH) assumption. We additionally observe that the Learning Parity with Noise (LPN) assumption itself can be cast as a permuted puzzle. 3. Partial lower bound for the DE-PIR problem. We make progress towards better understanding the permuted puzzles underlying the DE-PIR constructions, by showing that a toy version of the problem, introduced by Boyle et al. (TCC\u2717), withstands a rich class of attacks, namely those that distinguish solely via statistical queries

    Robust and cheating-resilient power auctioning on Resource Constrained Smart Micro-Grids

    Get PDF
    The principle of Continuous Double Auctioning (CDA) is known to provide an efficient way of matching supply and demand among distributed selfish participants with limited information. However, the literature indicates that the classic CDA algorithms developed for grid-like applications are centralised and insensitive to the processing resources capacity, which poses a hindrance for their application on resource constrained, smart micro-grids (RCSMG). A RCSMG loosely describes a micro-grid with distributed generators and demand controlled by selfish participants with limited information, power storage capacity and low literacy, communicate over an unreliable infrastructure burdened by limited bandwidth and low computational power of devices. In this thesis, we design and evaluate a CDA algorithm for power allocation in a RCSMG. Specifically, we offer the following contributions towards power auctioning on RCSMGs. First, we extend the original CDA scheme to enable decentralised auctioning. We do this by integrating a token-based, mutual-exclusion (MUTEX) distributive primitive, that ensures the CDA operates at a reasonably efficient time and message complexity of O(N) and O(logN) respectively, per critical section invocation (auction market execution). Our CDA algorithm scales better and avoids the single point of failure problem associated with centralised CDAs (which could be used to adversarially provoke a break-down of the grid marketing mechanism). In addition, the decentralised approach in our algorithm can help eliminate privacy and security concerns associated with centralised CDAs. Second, to handle CDA performance issues due to malfunctioning devices on an unreliable network (such as a lossy network), we extend our proposed CDA scheme to ensure robustness to failure. Using node redundancy, we modify the MUTEX protocol supporting our CDA algorithm to handle fail-stop and some Byzantine type faults of sites. This yields a time complexity of O(N), where N is number of cluster-head nodes; and message complexity of O((logN)+W) time, where W is the number of check-pointing messages. These results indicate that it is possible to add fault tolerance to a decentralised CDA, which guarantees continued participation in the auction while retaining reasonable performance overheads. In addition, we propose a decentralised consumption scheduling scheme that complements the auctioning scheme in guaranteeing successful power allocation within the RCSMG. Third, since grid participants are self-interested we must consider the issue of power theft that is provoked when participants cheat. We propose threat models centred on cheating attacks aimed at foiling the extended CDA scheme. More specifically, we focus on the Victim Strategy Downgrade; Collusion by Dynamic Strategy Change, Profiling with Market Prediction; and Strategy Manipulation cheating attacks, which are carried out by internal adversaries (auction participants). Internal adversaries are participants who want to get more benefits but have no interest in provoking a breakdown of the grid. However, their behaviour is dangerous because it could result in a breakdown of the grid. Fourth, to mitigate these cheating attacks, we propose an exception handling (EH) scheme, where sentinel agents use allocative efficiency and message overheads to detect and mitigate cheating forms. Sentinel agents are tasked to monitor trading agents to detect cheating and reprimand the misbehaving participant. Overall, message complexity expected in light demand is O(nLogN). The detection and resolution algorithm is expected to run in linear time complexity O(M). Overall, the main aim of our study is achieved by designing a resilient and cheating-free CDA algorithm that is scalable and performs well on resource constrained micro-grids. With the growing popularity of the CDA and its resource allocation applications, specifically to low resourced micro-grids, this thesis highlights further avenues for future research. First, we intend to extend the decentralised CDA algorithm to allow for participants’ mobile phones to connect (reconnect) at different shared smart meters. Such mobility should guarantee the desired CDA properties, the reliability and adequate security. Secondly, we seek to develop a simulation of the decentralised CDA based on the formal proofs presented in this thesis. Such a simulation platform can be used for future studies that involve decentralised CDAs. Third, we seek to find an optimal and efficient way in which the decentralised CDA and the scheduling algorithm can be integrated and deployed in a low resourced, smart micro-grid. Such an integration is important for system developers interested in exploiting the benefits of the two schemes while maintaining system efficiency. Forth, we aim to improve on the cheating detection and mitigation mechanism by developing an intrusion tolerance protocol. Such a scheme will allow continued auctioning in the presence of cheating attacks while incurring low performance overheads for applicability in a RCSMG

    Cryptographic Security of SSH Encryption Schemes

    Get PDF

    Konzepte fĂĽr Datensicherheit und Datenschutz in mobilen Anwendungen

    Get PDF
    Smart Devices und insbesondere Smartphones nehmen eine immer wichtigere Rolle in unserem Leben ein. Aufgrund einer kontinuierlich anwachsenden Akkulaufzeit können diese Geräte nahezu ununterbrochen mitgeführt und genutzt werden. Zusätzlich sorgen stetig günstiger werdende Mobilfunktarife und ansteigende Datenraten dafür, dass den Nutzern mit diesen Geräten eine immerwährende Verbindung zum Internet zur Verfügung steht. Smart Devices sind dadurch nicht mehr reine Kommunikationsmittel sondern ebenfalls Informationsquellen. Darüber hinaus gibt es eine Vielzahl an Anwendungen von Drittanbietern für diese Geräte. Dank der darin verbauten Sensoren, können darauf beispielsweise ortsbasierte Anwendungen, Gesundheitsanwendungen oder Anwendungen für die Industrie 4.0 ausgeführt werden, um nur einige zu nennen. Solche Anwendungen stellen allerdings nicht nur ein großes Nutzen-, sondern zu gleich ein immenses Gefahrenpotential dar. Über die Sensoren können die unterschiedlichsten Kontextdaten erfasst und relativ präzise Rückschlüsse auf den Nutzer gezogen werden. Daher sollte bei diesen Geräten ein besonderes Augenmerk auf die Datensicherheit und insbesondere auf den Datenschutz gelegt werden. Betrachtet man allerdings die bestehenden Datensicherheits- und Datenschutzkomponenten in den aktuell vorherrschenden mobilen Plattformen, so fällt auf, dass keine der Plattformen die speziellen Anforderungen an ein mobiles Datensicherheits- und Datenschutzsystem zufriedenstellend erfüllt. Aus diesem Grund steht im Zentrum der vorliegende Arbeit die Konzeption und Umsetzung neuartiger Datensicherheits- und Datenschutzkonzepte für mobile Anwendungen. Hierfür werden die folgenden fünf Forschungsbeiträge erbracht: [FB1] Bestehende Datensicherheits- und Datenschutzkonzepte werden analysiert, um deren Schwachstellen zu identifizieren. [FB2] Ein kontextsensitives Berechtigungsmodell wird erstellt. [FB3] Das Berechtigungsmodell wird in einem flexiblen Datenschutzsystem konzeptionell eingebettet und anschließend implementiert. [FB4] Das Datenschutzsystem wird zu einem holistischen Sicherheitssystem erweitert. [FB5] Das daraus entstandene holistische Sicherheitssystem wird evaluiert. Um die Forschungsziele zu erreichen, wird mit dem Privacy Policy Model (PPM) ein gänzlich neues Modell zur Formulierung von feingranularen Berechtigungsregeln eingeführt, die es dem Nutzer ermöglichen, je nach Bedarf, einzelne Funktionseinheiten einer Anwendung zu deaktivieren, um dadurch die Zugriffsrechte der Anwendung einzuschränken. Zusätzlich kann der Nutzer auch die Genauigkeit der Daten, die der Anwendung zur Verfügung gestellt werden, reduzieren. Das PPM wird in der Privacy Policy Platform (PMP) implementiert. Die PMP ist ein Berechtigungssystem, das nicht nur für die Einhaltung der Datenschutzrichtlinien sorgt, sondern auch einige der Schutzziele der Datensicherheit erfüllt. Für die PMP werden mehrere Implementierungsstrategien diskutiert und deren Vor- und Nachteile gegeneinander abgewogen. Um neben den Datenschutz auch die Datensicherheit gewährleisten zu können, wird die PMP um den Secure Data Container (SDC) erweitert. Mit dem SDC können sensible Daten sicher gespeichert und zwischen Anwendungen ausgetauscht werden. Die Anwendbarkeit der PMP und des SDCs wird an Praxisbeispielen aus vier unterschiedlichen Domänen (ortsbasierte Anwendungen, Gesundheitsanwendungen, Anwendungen in der Industrie 4.0 und Anwendungen für das Internet der Dinge) demonstriert. Bei dieser Analyse zeigt sich, dass die Kombination aus PMP und SDC nicht nur sämtliche Schutzziele, die im Rahmen der vorliegenden Arbeit relevant sind und sich am ISO-Standard ISO/IEC 27000:2009 orientieren, erfüllt, sondern darüber hinaus sehr performant ist. Durch die Verwendung der PMP und des SDCs kann der Akkuverbrauch von Anwendungen halbiert werden

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we
    corecore